王 震1,张 琎2
WANG Zhen1 and ZHANG Jin2
摘要: 研究了一类不稳定非线性Schrdinger方程初边值问题的有限差分方法,证明了差分格式的两个离散守恒律,用能量方法得到了差分解的收敛性和稳定性. 给出了数值算例.
中图分类号:
| [1] | 张泰年,李照兴. 一类退化抛物型方程反问题的收敛性分析[J]. 山东大学学报(理学版), 2017, 52(8): 35-42. |
| [2] | 李玉,刘希强. 扩展的KP-Benjamin-Bona-Mahoney方程的对称、约化和精确解[J]. 山东大学学报(理学版), 2017, 52(2): 77-84. |
| [3] | 郑秀云,史加荣. Armijo型线搜索下的全局收敛共轭梯度法[J]. 山东大学学报(理学版), 2017, 52(1): 98-101. |
| [4] | 张玉,肖犇琼,许可,沈爱婷. NSD随机变量阵列的完全矩收敛性[J]. 山东大学学报(理学版), 2016, 51(6): 30-36. |
| [5] | 王开荣,高佩婷. 建立在DY法上的两类混合共轭梯度法[J]. 山东大学学报(理学版), 2016, 51(6): 16-23. |
| [6] | 张立君,郭明乐. 行为渐近负相协随机变量阵列加权和的矩完全收敛性[J]. 山东大学学报(理学版), 2016, 51(2): 42-49. |
| [7] | 谭闯, 郭明乐, 祝东进. 行为ND随机变量阵列加权和的矩完全收敛性[J]. 山东大学学报(理学版), 2015, 50(06): 27-32. |
| [8] | 郑璐璐, 葛梅梅, 刘艳芳, 王学军. φ混合序列的完全矩收敛性[J]. 山东大学学报(理学版), 2015, 50(04): 14-19. |
| [9] | 陈一鸣, 柯小红, 韩小宁, 孙艳楠, 刘立卿. 小波法求解分数阶微分方程组及其收敛性分析[J]. 山东大学学报(理学版), 2015, 50(02): 67-74. |
| [10] | 许日丽,郭明乐. 行为ND随机变量阵列加权和的矩完全收敛性[J]. J4, 2013, 48(6): 9-13. |
| [11] | 马维元,张海东,邵亚斌. 非线性变阶分数阶扩散方程的全隐差分格式[J]. J4, 2013, 48(2): 93-97. |
| [12] | 王开荣,王书敏. 具有充分下降性的修正型混合共轭梯度法[J]. J4, 2013, 48(09): 78-84. |
| [13] | 张红玉,崔明荣*. 两类分数阶对流-扩散方程的有限差分方法[J]. J4, 2012, 47(6): 40-48. |
| [14] | 冯琳1,2,段复建1,和文龙1. 基于简单二次函数模型的滤子非单调信赖域算法[J]. J4, 2012, 47(5): 108-114. |
| [15] | 张天德1,左进明2,段伶计1. 广义improved KdV方程的守恒差分格式[J]. J4, 2011, 46(8): 4-7. |
|
||