您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

山东大学学报(理学版) ›› 2015, Vol. 50 ›› Issue (08): 34-39.doi: 10.6040/j.issn.1671-9352.0.2015.055

• 论文 • 上一篇    下一篇

平面弹性问题的高次有限元离散系统的局部多重网格法

刘春梅1, 钟柳强2, 舒适3, 肖映雄4   

  1. 1. 湖南科技学院理学院计算数学研究所, 湖南 永州 425199;
    2. 华南师范大学数学科学学院, 广东 广州 510631;
    3. 湘潭大学数学与计算科学学院, 湖南 湘潭 411105;
    4. 湘潭大学土木工程与力学学院, 湖南 湘潭 411105
  • 收稿日期:2015-02-02 出版日期:2015-08-20 发布日期:2015-07-31
  • 通讯作者: 钟柳强(1980- ),男,博士,教授,研究方向为偏微分方程数值解法. E-mail:zhong@scnu.edu.cn E-mail:zhong@scnu.edu.cn
  • 作者简介:刘春梅(1981- ),女,博士,讲师,研究方向为偏微分方程数值解法. E-mail:liuchunmei0629@163.com
  • 基金资助:
    湖南省自然科学基金资助项目(14JJ3135);国家自然科学基金资助项目(11201159,11426102);广东省高等学校优秀青年教师培养计划专项(Yq2013054);广州市珠江科技新星项目(2013J220063)

Local multigrid method for higher-order finite element discretizations of elasticity problems in two dimensions

LIU Chun-mei1, ZHONG Liu-qiang2, SHU Shi3, XIAO Ying-xiong4   

  1. 1. Institute of Computational Mathematics, College of Science, Hunan University of Science and Engineering, Yongzhou 425199, Hunan, China;
    2. School of Mathematical Sciences, South China Normal University, Guangzhou 510631, Guangdong, China;
    3. School of Mathematical and Computational Science, Xiangtan University, Xiangtan 411105, Hunan, China;
    4. College of Civil Engineering and Mechanics, Xiangtan University, Xiangtan 411105, Hunan, China
  • Received:2015-02-02 Online:2015-08-20 Published:2015-07-31

摘要: 自适应算法的每一次加密过程中,只需要在旧网格中增加少数加密节点,从而使得基于相邻网格的有限元函数空间,仅有少数高次有限元基函数需要发生改变.利用这一特性,本文针对平面弹性问题的自适应高次有限元离散系统,设计了一种基于局部松弛的多重网格法,即在每一次迭代过程中,先对高次有限元分层基函数中最高次齐次部分进行一次对称Gauss-Seidal 磨光,然后将残量方程投影到线性有限元空间,得到线性有限元离散系统,最后对该线性有限元离散系统进行一次局部磨光. 数值实验表明该方法对求解自适应网格下的高次有限元方程具有鲁棒性.

关键词: 平面弹性问题, 高次自适应有限元离散系统, 局部松弛, 多重网格法

Abstract: Due to few limited vertexes increase during every refinement of adaptive finite element method (AFEM), only some limited basis functions change between two finite element spaces based on two adjacent refinement meshes. By use of this special property, a type of multigrid method based on the local relaxation is applied to the high-order AFEM discrete systems of elasticity problems in two dimensions, that is, during each iteration, the part of the homogeneous high-order systems based on hierarchical basis functions is solved by a symmetric Gauss-Seidal method once, and then these residual systems are projected onto linear finite element space, and discrete systems based on linear finite element spaces are generated. Finally, these linear finite element discretizations are solved by a symmetric local Gauss-Seidal method once. The numerical experiments show that the local multigrid method is robust.

Key words: elasticity problems, higher-order finite element discretizations, local relaxation, multigrid method

中图分类号: 

  • O241.8
[1] SENTURIA S, ALURU N, WHITE J. Simulating the behavior of MEMS devices: computational methods and needs[J]. IEEE Computational Science and Engineering, 1997, 4(1):30-43.
[2] SENTURIA S, HARRIS R, JOHNSON B, et al. A computer-aided design system for microelectromechanical systems[J]. Journal of Microelectro Mechanical Systems, 1992, 1(1):3-13.
[3] BRENNER S C, SUNG Liyeng. Linear finite element methods for planar linear elasticity[J]. Mathematics of Computation, 1992, 59:321-338.
[4] 陈竹昌,王建华,王卫中. 自适应多层网格有限元求解应力集中问题[J].同济大学学报:自然科学版,1994,22(3):203-208. HEN Zhuchang, WANG Jianhua, WANG Weizhong. Adaptive multigrid FEM for stress concentration[J].Journal of Tongji University:Natural Sciences, 1994, 22(3):203-208.
[5] 梁力,林韵梅. 有限元网格修正的自适应分析及其应用[J]. 工程力学, 1995,12(2):109-118. LIANG Li, LIN Yunmei. Adaptive mesh refinement of finite element method and its application[J]. Engineering Mechanics, 1995, 12(2):109-118.
[6] 王建华. 线弹性有限元的自适应加密与多层网格法求解[J]. 河海大学学报:自然科学版,1994,22(3):16-22. WANG Jianhua. Adaptive refinement and multigrid solution for linear finite element method[J]. Journal of Hohai University:Natural Sciences, 1994, 22(3):16-22.
[7] 王建华, 殷宗泽, 赵维炳. 自适应多层网格有限元网格生成器研制[J]. 计算结构力学与其应用, 1995, 12(1):86-92. WANG Jianhua, YIN Zongze, ZHAO Weibing. Implementation of the mesh generator for adaptive multigrid finite element method[J]. Computational Structural Mechanics and Applications, 1995, 12(1):86-92.
[8] CAI Zhiqiang, KORSAWE J, STARKE G. An adaptive least squares mixed finite element method for the stress displacement formulation of linear elasticity[J]. Numerical Methods Partial Differential Equations, 2005, 21(1):132-148.
[9] WHILER T P. Locking-Free Adaptive discontinuous Galerkin FEM for linear elasticity problem[J]. Mathematics of Computation, 2006, 75(255):1087-1102.
[10] CHEN Long, ZHANG Chensong. A coarsening algorithm on adaptive grids by newest vertex bisection and its applications[J]. Journal of Computational Mathematics, 2010, 28(6):767-789.
[11] 刘春梅,肖映雄,舒适,等. 弹性力学问题自适应有限元及其局部多重网格法[J]. 工程力学,2012,29(9):60-67. LIU Chunmei, XIAO Yingxiong, SHU Shi, et al. Adaptive finite element method and local multigrid method for elasticity problem[J]. Engineering Mechanics, 2012, 29(9):60-67.
[1] 丁凤霞,程浩. 椭圆方程柯西问题磨光正则化参数的后验选取[J]. 山东大学学报(理学版), 2018, 53(2): 18-24.
[2] 于金彪,任永强,曹伟东,鲁统超,程爱杰,戴涛. 可压多孔介质流的扩展混合元解法[J]. 山东大学学报(理学版), 2017, 52(8): 25-34.
[3] 王洋,赵彦军,冯毅夫. 基于超松弛迭代的MHSS加速方法[J]. 山东大学学报(理学版), 2016, 51(8): 61-65.
[4] 聂天洋,史敬涛. 完全耦合正倒向随机控制系统的动态规划原理与最大值原理之间的联系[J]. 山东大学学报(理学版), 2016, 51(5): 121-129.
[5] 刘文月,孙同军. 椭圆方程约束的最优边界控制问题的非重叠型区域分解迭代方法[J]. 山东大学学报(理学版), 2016, 51(2): 21-28.
[6] 陈一鸣, 柯小红, 韩小宁, 孙艳楠, 刘立卿. 小波法求解分数阶微分方程组及其收敛性分析[J]. 山东大学学报(理学版), 2015, 50(02): 67-74.
[7] 苏丽娟 王文洽. 双边空间分数阶对流-扩散方程的一种有限差分解法[J]. J4, 2009, 44(10): 26-29.
[8] 李志涛 付红斐. 对流占优扩散问题的特征动态有限元方法[J]. J4, 2009, 44(8): 90-96.
[9] 张新东 胡月宏. 同伦分析方法求具有边界条件的扩散方程的精确解[J]. J4, 2008, 43(12): 73-76.
[10] 左进明 . 非线性BBM方程的数值解法[J]. J4, 2008, 43(4): 47-50 .
[11] 左进明 . 广义KdV方程的数值解法[J]. J4, 2008, 43(6): 44-48 .
[12] 许秋燕 . 解二维扩散方程的一类有限差分并行算法[J]. J4, 2008, 43(8): 1-05 .
[13] 张青洁,王文洽 . 色散方程高阶差分格式的并行迭代法[J]. J4, 2008, 43(2): 8-11 .
[14] 孙 鹏,赵卫东 . 亚式期权定价问题的交替方向迎风有限体积方法[J]. J4, 2007, 42(6): 16-21 .
[15] 常延贞,羊丹平 . 热耦合斯托克斯流问题的有限元分析[J]. J4, 2007, 42(8): 9-16 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!