林春进1,徐国静2
LIN Chun-jin1, XU Guo-jing2
摘要: 研究了描述波色子的高维Kaniadakis-Quarati方程的解的加权范数估计,证明了若初始质量充分大,这些范数在有限时间内趋于零。这种爆破现象在物理上称为Bose-Einstein 凝聚。
[1] | 董莉. 两类非线性波动方程解的爆破时间的下确界[J]. 山东大学学报(理学版), 2017, 52(4): 56-60. |
[2] | 刘洋,达朝究,李富明. Nehari流形在一类半线性抛物方程爆破中的应用[J]. 山东大学学报(理学版), 2016, 51(1): 123-127. |
[3] | 吕红杰, 刘静静, 齐静, 刘硕. 弱耗散μ-Hunter-Saxton方程的爆破[J]. 山东大学学报(理学版), 2015, 50(05): 55-59. |
[4] | 宋丹丹,原保全*. 可压缩磁流体方程组的显式爆破解[J]. J4, 2012, 47(2): 26-30. |
[5] | 代丽美. 完全非线性一致椭圆方程的边界爆破问题[J]. J4, 2011, 46(6): 34-36. |
[6] | 阎小丽,原保全*. 欧拉方程的显式爆破解[J]. J4, 2011, 46(12): 104-107. |
[7] | 李凤萍. 三维广义磁流体方程组解的爆破准则[J]. J4, 2010, 45(4): 90-94. |
[8] | 陆求赐1,曾有栋2. 非局部波动方程组解的半无界问题[J]. J4, 2010, 45(10): 104-108. |
|