您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

山东大学学报(理学版) ›› 2016, Vol. 51 ›› Issue (10): 1-5.doi: 10.6040/j.issn.1671-9352.0.2016.037

• •    下一篇

变量核参数型Marcinkiewicz积分算子在加权Campanato空间的有界性

黄玲玲,赵凯*   

  1. 青岛大学数学与统计学院, 山东 青岛 266071
  • 收稿日期:2016-01-25 出版日期:2016-10-20 发布日期:2016-10-17
  • 通讯作者: 赵凯(1960— ),男,博士,教授,研究方向为调和分析及其应用. E-mail:zhkzhc@aliyun.com E-mail:18765918957@163.com
  • 作者简介:黄玲玲(1992— ),女,硕士研究生,研究方向为调和分析及其应用. E-mail:18765918957@163.com
  • 基金资助:
    国家自然科学基金资助项目(11471176);山东省自然科学基金资助项目(BS2014SF002)

Boundedness of the parameterized Marcinkiewicz integral operators with variable kernels on weighted Campanato spaces

HUANG Ling-ling, ZHAO Kai*   

  1. School of Mathematics and Statistics, Qingdao University, Qingdao 266071, Shandong, China
  • Received:2016-01-25 Online:2016-10-20 Published:2016-10-17

摘要: 借助于带变量核参数型Marcinkiewicz积分算子的加权Lp有界性,利用经典的不等式估计以及加权Campanato空间的性质,证明了其在加权Campanato空间的有界性。作为Campanato空间的一个特例,还得到了其在加权BMO(Rn)空间的有界性。

关键词: Marcinkiewicz积分算子, 加权Campanato空间, 有界性, 变量核

Abstract: Based on the results of the boundedness of parameterized Marcinkiewicz integral operators on weighted Lp spaces, by using the estimates of classical inequalities and the properties of the weighted Campanato spaces, the boundedness of the parameterized Marcinkiewicz integral operators μρΩ with variable kernel on weighted Campanato and BMO spaces is obtained.

Key words: Marcinkiewicz integral operator, weighted Campanato space, boundedness, variable kernel

中图分类号: 

  • O174.2
[1] JOHN F, NIRENBERG L. On functions of bounded mean oscillation[J]. Comm Pure Appl Math, 1961, 14(3):415-426.
[2] CAMPANATO S. Proprieta di Hölderianita di alcune classi di funzioni[J]. Ann Sc Norm Sup Pisa, 1963, 17(3):173-188.
[3] HÖMANDER L. Estimates for translation invariant operators in Lp space[J]. Acta Math, 1960, 104(1-2):93-140.
[4] SAKAMOTO M, YABUTA K. Boundedness of Marcinkiewicz functions[J]. Studia Math, 1999, 135(2):103-142.
[5] CALDERON A P, ZYGMUND A. On a problem of Mihlin[J]. Netherlands: Springer, 1989, 78(78):209-209.
[6] 张璞, 陈杰诚. 一类带有变量核的积分算子在Herz型Hardy空间的有界性[J]. 数学年刊(A辑), 2004, 25(5):561-570. ZHANG Pu, CHEN Jiecheng. A class of integral operators with variable kernels on the Herz-type Hardy spaces[J]. Chinese Annals of Mathematics(A Edition), 2004, 25(5):561-570.
[7] 陶祥兴, 位瑞英. 可变核Marcinkiewicz 积分交换子在Herz型Hardy空间上的有界性[J]. 数学物理学报, 2009, 29A(6):1508-1517. TAO Xiangxing, WEI Ruiying. Boundedness of commutators related to Marcinkiewicz integrals with variable kernels in Herz-type Hardy spaces[J]. Acta Mathematica Scientia, 2009, 29A(6):1508-1517.
[8] DING Yong, LIN Chincheng, SHAO Shuanglin. On the Marcinkiewicz integral with variable kernel[J]. India Univ Math J, 2004, 53(3):805-821.
[9] 陈艳萍, 丁勇. 广义Morrey空间上带变量核的Littlewood-Paley算子[J]. 数学物理学报, 2009, 29A(3):630-642. CHEN Yanping, DING Yong. Littlewood-paley operator with variable kernels in generalized Morrey spaces[J]. Acta Mathematica Scientia, 2009, 29A(3):630-642.
[10] 王婷婷, 赵凯, 邵帅,等. 粗糙核Marcinkiewicz积分在Campanato空间上的加权有界性[J]. 青岛大学学报(自然科学版), 2011, 24(2):15-19. WANG Tingting, ZHAO Kai, SHAO Shuai, et al. Weighted boundedness of Marcinkiewicz integrals with rough kernels on Campanato spaces[J]. Journal of Qingdao University(Natural Science Edition), 2011, 24(2):15-19.
[11] DING Yong, XUE Qingying, YABUTA K. Existence and boundedness of parameterized Marcinkiewicz integral with rough kernel on Campanato spaces[J]. Nagoya Math J, 2006, 181(1):103-148.
[12] 王月山, 毋俊洲. 加权Campanato空间的一些性质[J]. 焦作大学学报(综合版), 1995, 1(1):35-37. WANG Yueshan, WU Junzhou. Some properties on weighted Campanato spaces[J]. Journal of Jiaozuo University(Comprehensive Edition), 1995, 1(1):35-37.
[13] 姚红超, 朱月萍. 带变量核的Marcinkiewicz算子及其交换子在加权Morrey-Herz空间上的有界性[J]. 南通大学学报(自然科学版), 2012, 11(3):43-54. YAO Hongchao, ZHU Yueping. Boundedness of Marcinkiewicz integrals and their commutators with variable kernels on weighted Morrey-Herz spaces[J]. Journal of Nantong University(Natural Science Edition), 2012, 11(3):43-54.
[14] 韩永生. 关于s-函数和Marcinkiewicz积分的一些性质[J]. 北京大学学报(自然科学版), 1987, 23(5):21-34. HAN Yongsheng. On some properties of s-function and Marcinkiewicz integrals[J]. Journal of Peking University(Natural Science), 1987, 23(5):21-34.
[15] 潘亚丽, 李昌文. 带变量核的Marcinkiewwiccz积分交换子在加权弱Hardy空间上的有界性[J]. 山东大学学报(理学版), 2014, 49(3):84-89. PAN Yali, LI Changwen Boundedness of commutators related to Marcinkiewicz integrals with variable kernels on weighted weak Hardy spaces[J]. Journal of Shandong University(Natural Science), 2014, 49(3):84-89.
[1] 王金苹,赵凯. 变指标Herz型空间上分数次积分的Lipschitz交换子[J]. 山东大学学报(理学版), 2016, 51(10): 6-10.
[2] 周淑娟,刘素英. 线性算子在各向异性加权Herz型Hardy空间上的有界性[J]. 山东大学学报(理学版), 2014, 49(04): 74-78.
[3] 潘亚丽,李昌文. 带变量核的Marcinkiewicz积分交换子在加权弱Hardy空间上的有界性[J]. 山东大学学报(理学版), 2014, 49(03): 84-89.
[4] 赵凯,纪春静,黄智. 一类Marcinkiewicz积分交换子在Herz型Hardy空间中的有界性[J]. J4, 2013, 48(6): 1-4.
[5] 蒋晓宇. Bloch-type空间到Zygmund-type空间的微分复合算子[J]. J4, 2013, 48(4): 51-56.
[6] 陈翠. 加权型空间上的n阶微分复合算子[J]. J4, 2013, 48(4): 57-59.
[7] 潘亚丽1, 王信松2. 带变量核分数次Marcinkiewicz积分在Hardy型空间的有界性[J]. J4, 2013, 48(3): 64-72.
[8] 闫彦宗,邵旭馗,王素萍. 变量核的 Marcinkiewicz 高阶交换子在Hardy空间的有界性[J]. J4, 2013, 48(2): 67-71.
[9] 耿素丽,赵凯*,张立平. 非双倍测度下的Littlewood-Paley算子的有界性[J]. J4, 2013, 48(10): 78-81.
[10] 赵凯,孙晓华,杜宏彬. Littlewood-Paley算子在加权Herz空间的弱有界性[J]. J4, 2012, 47(4): 62-65.
[11] 张红霞1,孔祥智2. 一类关于两个积分变量的积分不等式及其应用[J]. J4, 2011, 46(8): 52-58.
[12] 杨萍,曹怀信*,司海燕. 广义模糊赋范空间中的模糊闭集和模糊开集[J]. J4, 2011, 46(4): 113-117.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!