您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

山东大学学报(理学版) ›› 2016, Vol. 51 ›› Issue (12): 103-107.doi: 10.6040/j.issn.1671-9352.0.2015.614

• • 上一篇    下一篇

变异机制在网络演化博弈中的应用

邢海云,赵建立*   

  1. 聊城大学数学科学学院, 山东 聊城 252000
  • 收稿日期:2015-12-17 出版日期:2016-12-20 发布日期:2016-12-20
  • 通讯作者: 赵建立(1964— ),男,教授,研究方向为矩阵论. E-mail:zhaojl1964@126.com E-mail:xinghaiyun520@163.com
  • 作者简介:邢海云(1991— ),女,硕士,研究方向为矩阵与博弈论. E-mail:xinghaiyun520@163.com
  • 基金资助:
    国家自然科学基金资助项目(11301274);山东省自然科学基金资助项目(ZR2012AL06)

Formulation of networked evolutionary games with variation mechanism

XING Hai-yun, ZHAO Jian-li*   

  1. College of Mathematics and Science, Liaocheng University, Liaocheng 252000, Shandong, China
  • Received:2015-12-17 Online:2016-12-20 Published:2016-12-20

摘要: 研究了加入回报机制的变异雪堆博弈。在矩阵的半张量积框架下,构建了该网络演化博弈的数学模型,与逻辑的矩阵表达相结合,该数学模型被表示成动态逻辑系统并转化成代数形式。对该动态逻辑演化过程进行分析,结合实例讨论了最终合作稳定性。

关键词: 矩阵的半张量积, 雪堆博弈, 回报机制, 网络演化博弈

Abstract: This paper investigates the variation of snowdrift game with reward mechanism was investigated. Using the method of semi-tensor product of matrices, the mathematical model of the networked evolutionary game was built. The network-ed evolutionary game was expressed as a logical dynamic system and then converted into its algebraic form rely on the matrix expression of logic and the method of semi-tensor product of matrices. Then, the evolutionary logical dynamic process was analyzed and the final cooperation stability was discussed through an illustrative example.

Key words: snowdrift game, network evolution game, semi-tensor product of matrices, reward mechanism

中图分类号: 

  • O151
[1] CHENG Daizhan, HE Fenghua, QI Hongsheng, et al. Modeling, analysis and control of networked evolutionary games[J]. IEEE Transactions on Automatic Control, 2015, 60(9):2402-2415.
[2] 季铭,徐晨. 演化雪堆博弈模型中的合作行为[J].苏州大学学报(自然科学版),2010,26(1):57-65. JI Ming, XU Chen. Cooperation behavior in evolutionary snowdrift game[J]. Journal of Suzhou University(Natural Science), 2010, 26(1):57-65.
[3] CHENG Daizhan, QI Hongsheng, ZHAO Yin. An introduction to semi-tensor product of matrices and its applications[M]. Singapore: World Scientific Publishing Co Pte Ltd, 2012.
[4] 程代展,齐洪胜.矩阵的半张量积——理论与应用[M].2版. 北京:科学出版社, 2010. CHENG Daizhan, QI Hongsheng. Semi-tensor product of matrices-theory and application[M]. 2nd ed. Beijing: Science Press, 2010.
[5] CHENG Daizhan, HE Fenghua, QI Hongsheng, et al. Semi-tensor product approach to networked evolutionary games[J]. Control Theory Tech, 2014, 12(2):198-214.
[6] CHENG Daizhan. Input-state approach to Boolean networks[J]. IEEE Transactions on Neural New, 2009, 20:512-521.
[7] LI Fangfei, SUN Jitao. Stability and stabilization of multivalued logical network[J]. Nonlinear Analysis Real World Applications, 2011, 12(6):3701-3712.
[8] CHENG Daizhan, QI Hongsheng, HE Fenghua, et al. Semi-tensor product approach to networked evolutionary games[J]. Control Theory and Technology, 2014, 12(2):198-214.
[9] QI Hongsheng, CHENG Daizhan, DONG Hairong. On networked evolutionary games-part 1: formulation[J]. IFAC Proceedings Volumes, 2014, 47(3):275-280.
[10] CHENG Daizhan, HE Fenghua, XU Tingting. On networked evolutionary games — Part2: dynamics and control[J]. IFAC Proceedings Volumes, 2014, 47(3):281-286.
[11] LIU Zhenbin, WANG Yuzhen. General logical expression of k-valued and mix-valued pseudo-logical functions[C] // Proceedings of the 31st Chinese Control Conference, New York: IEEE, 2012: 66-71.
[12] CHENG Daizhan. On finite potential games[J]. Automatica, 2014, 50(7):1793-1801.
[13] 葛美侠,李莹,赵建立,等.网络演化博弈的策略一致性[J].山东大学学报(理学版),2015,50(11):113-118. GE Meixia, LI Ying, ZHAO Jianli, et al. Strategy consensus of networked evolutionary games[J]. Journal of Shandong University(Natural Science), 2015, 50(11):113-118.
[1] 葛美侠, 李莹, 赵建立, 邢海云. 网络演化博弈的策略一致性[J]. 山东大学学报(理学版), 2015, 50(11): 113-118.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!