您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

山东大学学报(理学版) ›› 2017, Vol. 52 ›› Issue (2): 30-36.doi: 10.6040/j.issn.1671-9352.0.2016.113

• • 上一篇    下一篇

控制数给定的树的最大离心距离和

朱晓颖1,逄世友2   

  1. 1.南京航空航天大学金城学院, 江苏 南京 211156;2.中国矿业大学数学系, 江苏 徐州 221008
  • 收稿日期:2016-03-14 出版日期:2017-02-20 发布日期:2017-01-18
  • 作者简介:朱晓颖(1978— ),女,硕士,副教授,研究方向为图论及其应用. E-mail:10522520@qq.com
  • 基金资助:
    国家自然科学基金资助项目(11271365)

On the maximal eccentric distance sum of tree with given domination number

ZHU Xiao-ying1, PANG Shi-you2   

  1. 1. College of Jincheng, Nanjing University of Aeronautics and Astronautics, Nanjing 211156, Jiangsu, China;
    2. Department of Mathematics, China University of Mining and Technology, Xuzhou 221008, Jiangsu, China
  • Received:2016-03-14 Online:2017-02-20 Published:2017-01-18

摘要: 图G的离心距离和定义为ξd(G)=∑V∈VGεG(v)DG(v), 其中εG(v)是顶点v的离心率, DG(v)是指在图G中顶点v到其他所有顶点的距离和。 运用结构图论的方法刻画了控制数为4的树的最大离心距离和对应的极图。

关键词: 离心距离和, 控制数, 叶点

Abstract: The eccentric distance sum of graph G is defined as ξd(G)=∑v∈VεG(v)DG(v), where εG(v) is the eccentricity of the vertex v and DG(v) is the sum of all distances from the vertex v. The trees having the maximal eccentric distance sum among n-vertex trees with domination number four are characterized by using the method of structure graph theory.

Key words: leavers, domination number, the eccentric distance sum

中图分类号: 

  • O157.5
[1] ORE O. Theory of graphs[M]. Providence: American Mathematical Society, 1962.
[2] GUPTA S, SINGH M, MADAN A K. Eccentric distance sum: a novel graph invariant for predicting biological and physical properties[J]. Journal of Mathematical Analysis and Applications, 2002, 275(47):386-401.
[3] YU G H, FENG L H, ILIC A. On the eccentric distance sum of trees and unicyclic graphs[J]. Journal of Mathematical Analysis and Applications, 2011, 375(1):99-107.
[4] LI S C, ZHANG M, YU G H, et al. On the extremal values of the eccentric distance sum of trees[J]. Journal of Mathematical Analysis and Applications, 2012, 390:99-112.
[5] GENG X Y, LI S C, ZHANG M. Extremal values of the eccentric distance sum of trees[J]. Discrete Applied Mathematics, 2013, 161:2427-2439.
[6] MIAO L Y, CAO Q Q, CUI N, et al. On the extremal values of the eccentric distance sum of trees[J]. Discrete Applied Mathematics, 2015, 186(29):199-206.
[7] HUA H B, XU K X, SHU W N. A short and unified proof of Yu et als two results on the eccentric distance sum[J]. Journal of Mathematical Analysis and Applications, 2011, 382:364-366.
[8] HUA H B, ZHANG S G, XU K X. Further results on the eccentric distance sum[J]. Discrete Applied Mathematics, 2012, 160:170-180.
[9] ILIC A, YU G H, FENG L H. On the eccentric distance sum of graphs[J]. Journal of Mathematical Analysis and Applications, 2011, 381:590-600.
[10] LI S C, WU Y Y, SUN L L. On the minimum eccentric distance sum of bipartite graphs with some given parameters[J]. Journal of Mathematical Analysis and Applications, 2015, 430:1149-1162.
[1] 高超,侯新民*. 关于“给定控制数的二部图的最大边数”的一点注记[J]. J4, 2013, 48(8): 21-23.
[2] 陈宏宇1,2, 张丽3. 给定控制数的连通二部图的最大边数[J]. J4, 2012, 47(8): 11-15.
[3] 袁秀华. 完全图的全符号控制数[J]. J4, 2010, 45(8): 43-46.
[4] 陈宏宇 牛翠霞 邹青松. 树的k-分支限制控制数的一个下界[J]. J4, 2010, 45(2): 1-4.
[5] 袁秀华. 图的符号边全控制数[J]. J4, 2009, 44(8): 21-24.
[6] 王 兵 . 拟无爪图的性质[J]. J4, 2007, 42(10): 111-113 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!