山东大学学报(理学版) ›› 2017, Vol. 52 ›› Issue (2): 37-38.doi: 10.6040/j.issn.1671-9352.0.2016.343
杨春花,蔡建生
YANG Chun-hua, CAI Jian-sheng
摘要: 研究了一类特殊的f-染色, 应用一阶矩定理给出了这类f-染色的简单图是f-第一类的一个充分条件。
中图分类号:
[1] HAKIMI S L, KARIV O. A generalization of edge-coloring in graphs[J]. J Graph Theory, 1986, 10:139-154. [2] BONDY J A, MURTY U S R. Graph Theory with applications[M]. New York: Macmillan Press, 1976. [3] NAKANO S I, NISHIZEKI T, SAITO N. On the f-coloring of multigraphs[J]. IEEE Trans Circuit and Sys, 1988, 35(3):345-353. [4] NAKANO S, NISHIZEKI T, SAITO N. On the fg-coloring of graphs[J]. Gombinatorica, 1990, 10(1):67-80. [5] NAKANO S, NISHIZEKI T. An approximation algorithm for fg-edge-coloring Multigraphs[J]. Trans of Japan SIAM, 1991(1):195-211. [6] HILTON A J W. Coloring the edges of a multigraph so that each vertex has at most j, or at least j edges of each color on it[J]. J London Math Soc, 1975, 12:123-128. [7] MIAO Lianying. The classification of graphs on edge covering coloring[J]. J of Math, 2001, 21(4):369-372. [8] ZHANG Xia, LIU Guizhen. The classification of complete graphs Kn on f-coloring[J]. J Applied Mathematics&Computing, 2005, 19(1-2):127-133. [9] 张霞. 图的f-染色和均匀边染色[D]. 济南:山东大学, 2007. ZHANG Xia. The f-coloring and the equitable edge-coloring of graphs[D]. Jinan: Shandong University, 2007. [10] BECK J. An Algorithmic Approach to the Lovász local lemma I[J]. Random Structures & Algorithms, 1991(2):343-365. [11] ALON N, MCDIARMID C, REED B. Acyclic coloring of graphs[J]. Random Structures and Algotithms, 1991, 2:277-288. [12] CZUMAJ A, SCHIEDELER C. Coloring nonuniform hypergraphs: a new algorithmic approach to the general Lovasz local lemma[J]. Random Structures & Algorithms, 2000, 17:213-237. [13] BOLLOBAS B. The chromatic number of random graphs[J]. Combinatorica, 1988, 8:49-55. [14] GREENHILL C, PIKHURKO O. Bounds on the generalized acyclic chromatic number of bounded degree graphs[J]. Graphs Combin, 2005, 21:407-419. [15] ERDÖS P. Graph theory and probability[J]. Canadian J of Math, 1959, 11:34-38. [16] MOLLOY M, REED B. Graph colouring and the probabilistic method[M] // Algorithms and Combinatorics. New Yorks: Springer, 2002: 27-37. |
[1] | 寇艳芳,陈祥恩,王治文. K1,3,p和 K1,4,p的点可区别的IE-全染色及一般全染色[J]. 山东大学学报(理学版), 2018, 53(8): 53-60. |
[2] | 房启明,张莉. 无4-圈和5-圈的平面图的k-frugal列表染色[J]. 山东大学学报(理学版), 2018, 53(10): 35-41. |
[3] | 王晓丽,王慧娟,刘彬. 最大度为7的平面图全染色[J]. 山东大学学报(理学版), 2017, 52(8): 100-106. |
[4] | 潘文华,徐常青. 一类稀疏图的邻和可区别边色数[J]. 山东大学学报(理学版), 2017, 52(8): 94-99. |
[5] | 陈祥恩,苗婷婷,王治文. 两条路的联图的点可区别I-全染色[J]. 山东大学学报(理学版), 2017, 52(4): 30-33. |
[6] | 何玉萍,王治文,陈祥恩. mC8的点可区别全染色[J]. 山东大学学报(理学版), 2017, 52(10): 24-30. |
[7] | 李世玲, 陈祥恩,王治文. 完全二部图K3,n(n≥18)的点可区别E-全染色[J]. 山东大学学报(理学版), 2016, 51(4): 68-71. |
[8] | 谭香. 不含6-圈和相邻5-圈的平面图的全染色[J]. 山东大学学报(理学版), 2016, 51(4): 72-78. |
[9] | 宋红杰,巩相男,潘文华,徐常青. Halin图的邻和可区别全染色[J]. 山东大学学报(理学版), 2016, 51(4): 65-67. |
[10] | 朱海洋,顾 毓,吕新忠. 平面图的平方染色数的一个新上界[J]. 山东大学学报(理学版), 2016, 51(2): 94-101. |
[11] | 孟宪勇, 郭建华, 苏本堂. 3-正则Halin图的完备染色[J]. 山东大学学报(理学版), 2015, 50(12): 127-129. |
[12] | 孟献青. 一类平面图的强边染色[J]. 山东大学学报(理学版), 2015, 50(08): 10-13. |
[13] | 何雪, 田双亮. 若干图的倍图的邻点可区别边(全)染色[J]. 山东大学学报(理学版), 2015, 50(04): 63-66. |
[14] | 李敬文, 贾西贝, 董威, 李小慧, 闫光辉. 图的邻点可区别全染色算法[J]. 山东大学学报(理学版), 2015, 50(02): 14-21. |
[15] | 姚京京, 徐常青. 最大度为3或4的图的邻和可区别全染色[J]. 山东大学学报(理学版), 2015, 50(02): 9-13. |
|