您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

山东大学学报(理学版) ›› 2017, Vol. 52 ›› Issue (2): 37-38.doi: 10.6040/j.issn.1671-9352.0.2016.343

• • 上一篇    下一篇

限定条件下图的f-染色的分类

杨春花,蔡建生   

  1. 潍坊学院数学与信息科学学院, 山东 潍坊 261061
  • 收稿日期:2016-07-17 出版日期:2017-02-20 发布日期:2017-01-18
  • 作者简介:杨春花(1982—),女,博士研究生,讲师, 研究方向为图论. E-mail:chunhuayangwf@163.com
  • 基金资助:
    国家自然科学基金资助项目(11226062,11571258)

Classification on f-coloring of graphs with some restrictions

YANG Chun-hua, CAI Jian-sheng   

  1. School of Mathematics and Information Sciences, Weifang University, Weifang 261061, Shandong, China
  • Received:2016-07-17 Online:2017-02-20 Published:2017-01-18

摘要: 研究了一类特殊的f-染色, 应用一阶矩定理给出了这类f-染色的简单图是f-第一类的一个充分条件。

关键词: 染色, 一阶矩定理, 最大度, f-染色

Abstract: A special class of f-coloring of graphs is investigated, and a sufficient condition is obtained for the special class of f-coloring of a simple graph being f-class 1 by the first moment principle.

Key words: coloring, maximum degree, the first moment principle, f-coloring

中图分类号: 

  • O157.5
[1] HAKIMI S L, KARIV O. A generalization of edge-coloring in graphs[J]. J Graph Theory, 1986, 10:139-154.
[2] BONDY J A, MURTY U S R. Graph Theory with applications[M]. New York: Macmillan Press, 1976.
[3] NAKANO S I, NISHIZEKI T, SAITO N. On the f-coloring of multigraphs[J]. IEEE Trans Circuit and Sys, 1988, 35(3):345-353.
[4] NAKANO S, NISHIZEKI T, SAITO N. On the fg-coloring of graphs[J]. Gombinatorica, 1990, 10(1):67-80.
[5] NAKANO S, NISHIZEKI T. An approximation algorithm for fg-edge-coloring Multigraphs[J]. Trans of Japan SIAM, 1991(1):195-211.
[6] HILTON A J W. Coloring the edges of a multigraph so that each vertex has at most j, or at least j edges of each color on it[J]. J London Math Soc, 1975, 12:123-128.
[7] MIAO Lianying. The classification of graphs on edge covering coloring[J]. J of Math, 2001, 21(4):369-372.
[8] ZHANG Xia, LIU Guizhen. The classification of complete graphs Kn on f-coloring[J]. J Applied Mathematics&Computing, 2005, 19(1-2):127-133.
[9] 张霞. 图的f-染色和均匀边染色[D]. 济南:山东大学, 2007. ZHANG Xia. The f-coloring and the equitable edge-coloring of graphs[D]. Jinan: Shandong University, 2007.
[10] BECK J. An Algorithmic Approach to the Lovász local lemma I[J]. Random Structures & Algorithms, 1991(2):343-365.
[11] ALON N, MCDIARMID C, REED B. Acyclic coloring of graphs[J]. Random Structures and Algotithms, 1991, 2:277-288.
[12] CZUMAJ A, SCHIEDELER C. Coloring nonuniform hypergraphs: a new algorithmic approach to the general Lovasz local lemma[J]. Random Structures & Algorithms, 2000, 17:213-237.
[13] BOLLOBAS B. The chromatic number of random graphs[J]. Combinatorica, 1988, 8:49-55.
[14] GREENHILL C, PIKHURKO O. Bounds on the generalized acyclic chromatic number of bounded degree graphs[J]. Graphs Combin, 2005, 21:407-419.
[15] ERDÖS P. Graph theory and probability[J]. Canadian J of Math, 1959, 11:34-38.
[16] MOLLOY M, REED B. Graph colouring and the probabilistic method[M] // Algorithms and Combinatorics. New Yorks: Springer, 2002: 27-37.
[1] 寇艳芳,陈祥恩,王治文. K1,3,p K1,4,p的点可区别的IE-全染色及一般全染色[J]. 山东大学学报(理学版), 2018, 53(8): 53-60.
[2] 房启明,张莉. 无4-圈和5-圈的平面图的k-frugal列表染色[J]. 山东大学学报(理学版), 2018, 53(10): 35-41.
[3] 王晓丽,王慧娟,刘彬. 最大度为7的平面图全染色[J]. 山东大学学报(理学版), 2017, 52(8): 100-106.
[4] 潘文华,徐常青. 一类稀疏图的邻和可区别边色数[J]. 山东大学学报(理学版), 2017, 52(8): 94-99.
[5] 陈祥恩,苗婷婷,王治文. 两条路的联图的点可区别I-全染色[J]. 山东大学学报(理学版), 2017, 52(4): 30-33.
[6] 何玉萍,王治文,陈祥恩. mC8的点可区别全染色[J]. 山东大学学报(理学版), 2017, 52(10): 24-30.
[7] 李世玲, 陈祥恩,王治文. 完全二部图K3,n(n≥18)的点可区别E-全染色[J]. 山东大学学报(理学版), 2016, 51(4): 68-71.
[8] 谭香. 不含6-圈和相邻5-圈的平面图的全染色[J]. 山东大学学报(理学版), 2016, 51(4): 72-78.
[9] 宋红杰,巩相男,潘文华,徐常青. Halin图的邻和可区别全染色[J]. 山东大学学报(理学版), 2016, 51(4): 65-67.
[10] 朱海洋,顾 毓,吕新忠. 平面图的平方染色数的一个新上界[J]. 山东大学学报(理学版), 2016, 51(2): 94-101.
[11] 孟宪勇, 郭建华, 苏本堂. 3-正则Halin图的完备染色[J]. 山东大学学报(理学版), 2015, 50(12): 127-129.
[12] 孟献青. 一类平面图的强边染色[J]. 山东大学学报(理学版), 2015, 50(08): 10-13.
[13] 何雪, 田双亮. 若干图的倍图的邻点可区别边(全)染色[J]. 山东大学学报(理学版), 2015, 50(04): 63-66.
[14] 李敬文, 贾西贝, 董威, 李小慧, 闫光辉. 图的邻点可区别全染色算法[J]. 山东大学学报(理学版), 2015, 50(02): 14-21.
[15] 姚京京, 徐常青. 最大度为3或4的图的邻和可区别全染色[J]. 山东大学学报(理学版), 2015, 50(02): 9-13.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!