山东大学学报(理学版) ›› 2017, Vol. 52 ›› Issue (4): 100-104.doi: 10.6040/j.issn.1671-9352.0.2016.362
马海成1,2,李生刚2
MA Hai-cheng1,2, LI Sheng-gang2
摘要: 对每一个有限拓扑定义了一个被称为拓扑图的有向图。 拓扑的元之间规定了一个等价关系,因而产生等价类,利用等价类的闭包之间的包含关系定义这个有向图。 证明了拓扑和拓扑图是相互唯一确定的, 利用拓扑图很容易计算一个集合的闭包、导集、内部和边界等运算。 证明了拓扑的连通性与拓扑图的连通性是一致的, 利用拓扑图计算了只有1≤n≤4个元的不同胚拓扑的个数。
中图分类号:
[1] DIESTEL R, KH(¨overU)N D. Topological paths, cycles and spanning trees in infinite graphs[J]. European Journal of Combinatorics, 2004, 25:835-862. [2] DIESTEL R. The cycle space of an infinite graph[J]. Combin Probab Comput, 2005, 14:59-79. [3] DIESTEL R. End spaces and spanning trees[J]. Journal of Combinatorial Theory, Series B, 2006, 96:846-854. [4] AGELOS GEORGAKOPOULOS. Graph topologies induced by edge lengths[J]. Discrete Mathematics, 2011, 311:1523-1542. [5] DIESTEL R, KH(¨overU)N D. Topological paths, cycles and spanning trees in infinite graphs[J]. European Journal of Combinatorics, 2004, 25:835-862. [6] RICHTER BRUCE R. Graph-like spaces: an introduction[J]. Discrete Mathematics, 2011, 311:1390-1396. [7] DIESTEL R. Locally finite graphs with ends: a topological approach. I. basic theory[J]. Discrete Mathematics, 2011, 311:1423-1447. [8] DIESTEL R. Locally finite graphs with ends: a topological approach, II. applications[J]. Discrete Mathematics, 2010, 310:2750-2765. [9] DIESTEL R, SPR(¨overU)SSEL P. Locally finite graphs with ends: a topological approach. III. fundamental group and homology[J]. Discrete Mathematics, 2012, 312:21-29. [10] 熊金城. 点集拓扑讲义[M]. 3rd. 北京:高等教育出版社,2003. XIONG Jincheng. Poing set topology[M]. 3rd. Beijing: Higher Education Press, 2003. [11] BONDY J A, MURTY U S R. Graph theory with applications[M]. New York: The Macmillan Press, 1976. |
[1] | 陈爱云,薛琼,陈欢欢,肖小峰. 具有渐近非负Ricci曲率完备非紧的黎曼流形[J]. 山东大学学报(理学版), 2018, 53(4): 1-6. |
[2] | 郭仪昊,许少亚. 有向图的广义支配集及其求解算法[J]. J4, 2013, 48(8): 18-20. |
[3] | 罗美金,高玉斌 . 一类恰含三个圈的三色有向图的本原指数[J]. J4, 2008, 43(1): 65-72 . |
|