您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

山东大学学报(理学版) ›› 2017, Vol. 52 ›› Issue (4): 105-110.doi: 10.6040/j.issn.1671-9352.0.2016.075

• • 上一篇    

离散时间多输入时滞随机系统的镇定性

高荣1,2,张焕水1*   

  1. 1. 山东大学控制科学与工程学院, 山东 济南 250061;2.鲁东大学数学与统计科学学院, 山东 烟台 264000
  • 收稿日期:2017-03-09 出版日期:2017-04-20 发布日期:2017-04-11
  • 通讯作者: 张焕水(1963— ), 男,博士,教授,研究方向为最优鲁棒控制与估计、传感器网络系统、时滞系统、随机系统.E-mail: hszhang@sdu.edu.cn E-mail:gr898@126.com
  • 作者简介:高荣(1975— ),男,博士研究生,研究方向为时滞系统、随机系统.E-mail: gr898@126.com
  • 基金资助:
    山东省泰山学者建设工程项目;国家自然科学基金资助项目(61120106011,61573221)

Stabilization for discrete-time stochastic systems with multiple input delay

GAO Rong1,2, ZHANG Huan-shui1*   

  1. 1. School of Control Science and Engineering, Shandong University, Jinan 250061, Shandong, China;
    2. School of Mathematics and Statistics Science, Ludong University, Yantai 264000, Shandong, China
  • Received:2017-03-09 Online:2017-04-20 Published:2017-04-11

摘要: 主要研究具有多输入时滞和乘性噪声的离散时间随机系统滚动时域镇定性问题。首先,构造新的性能指标,研究该性能指标的性质,得到系统滚动时域均方镇定的充分条件,该充分条件可以通过线性矩阵不等式进行求解。然后,在该条件下得到显式的镇定控制器。

关键词: 均方镇定性, 滚动时域控制, 耦合Riccati方程, 随机系统, 输入时滞

Abstract: This paper mainly investigates the mean square stabilization problem for discrete-time stochastic system with multiple input delay and multiplicative noises based on receding horizon control(RHC). First, a new cost was designed and the property of this cost function was studied. Then the sufficient mean square stabilization condition was obtained. This condition can be verified by solving linear matrix inequality. The explicit controller can be derived under this condition.

Key words: coupled Riccati equation, stochastic systems, mean-square stabilization, receding horizon control, input delay

中图分类号: 

  • TP13
[1] ZHANG W, BRANICKY M S, PHILLIPS S M. Stability of networked control systems[J]. IEEE Control Systems Magazine, 2001, 21(1): 84-99.
[2] RAMI M, ZHOU X. Linear matrix inequalities, Riccati equations and indefinite stochastic linear quadratic controls [J]. IEEE Transactions on Automatic Control, 2000, 45(6): 1131-1143.
[3] ZHANG W H, ZHANG H S, CHEN B S. Generalized Lyapunov equation approach to state-dependent stochastic stabilization/detectability criterion [J]. IEEE Transactions on Automatic Control, 2008, 53(7): 1630-1642.
[4] RAMI M, MOORE J B, ZHOU X Y. Indefinite stochastic linear quadratic control and generalized Riccati equation [J]. SIAM Journal on Control and Optimization, 2001, 40(4): 1296-1311.
[5] YONG J, ZHOU X. Stochatic controls: Hamiltonian systems and HJB Equations [M]. Berlin: Springer Verlag, 1999.
[6] BKSENDAL. Stochastic differential equations: an Introduction with applications [M]. Berlin: Springer Verlag, 2000.
[7] BKSENDAL, SULEM A, ZHANG T. Optimal control of stochastic delay equations and time-advanced backward stochastic differential equations [J]. Advances in Applied Probability, 2011, 43(2): 572-596.
[8] BJORNAR LARSSEN. Dynamic programming in stochastic control of systems with delay[J]. Stochastics and Stochastic Reports, 2002, 74(3): 651-673.
[9] CHEN L, WU Z, YU Z. delayed stochastic linear-quadratic control problem and related applications[J]. Journal of Applied Mathematics, 2012(6):4520-4562.
[10] ZHANG H S, LIN L, XU J J, et al. Linear quadratic regulation and stabilization of discrete-time systems with delay and multiplicative noise [J]. IEEE Transactions on Automatic Control, 2016, 60(10): 2599-2613.
[11] LIN L, ZHANG H S. Stabilization of discrete-time systems with multiplicative noise and multiple delays in the control variable [J]. SIAM Journal on Control and Optimization, 2016, 54(2): 814-917.
[12] KWON W H, LEE Y S, HAN S H. General receding horizon control for linear time-delay systems [J]. Automatica, 2004, 40(9): 1603-1611.
[13] PARK J H, YOO H W, HAN S, et al. Receding horizon control for input delayed systems [J]. IEEE Transactions on Automatica Control, 2008, 53(7): 1746-1752.
[14] HOKAYEM P, CINQUEMANI E, CHATTERJEE D, et al. Stochastic receding horizon control with output feedback and bounded controls [J]. Automatica,2012, 48(1): 77-88.
[15] CANNON M, KOUVARITAKIS B, WU X. Model predictive control for systems with stochastic multiplicative uncertainty and probabilistic constraints [J].Automatica, 2009, 45(1): 167-172.
[16] PRIMBS J A, SUNG C H. Stochastic receding horizon control of constrained linear systems with state and control multiplicative noise [J]. IEEE Transactions on Automatica Control, 2009, 54(2): 221-230.
[17] ZHANG H S, WANG H X, LI L. Adapted and casual maximum principle and analytical solution to optimal control for stochastic multiplicative-noise systems with multiple input-delays[C] //Proceedings of the 51st IEEE Conference on Decision and Control. New York: IEEE, Piscataway, 2012: 2122-2127.
[18] LI L, ZHANG H S, FU M Y. linear quadratic regualation for discrete-time systems with multiplicative noise and multiple input delays [J]. Optimcal Control Applications and Method, 2006, 6.
[19] BOYD S, GHAOURI LE, FERON E, et al. Linear matrix inequalities in system and control theory[M]. Philadelphia: SIAM, 1994.
[1] 谭成,张焕水. 具有输入时滞的离散时间随机系统Lyapunov镇定性条件[J]. 山东大学学报(理学版), 2016, 51(5): 114-120.
[2] 李琳, 张焕水. 离散时间多输入时滞系统的镇定性问题[J]. 山东大学学报(理学版), 2015, 50(11): 91-97.
[3] 黄玉林,张维海,李庆华 . 一类非线性随机不确定系统的鲁棒滤波[J]. J4, 2006, 41(2): 78-84 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!