您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

山东大学学报(理学版) ›› 2017, Vol. 52 ›› Issue (5): 58-69.doi: 10.6040/j.issn.1671-9352.0.2016.408

• • 上一篇    下一篇

考虑零售商不公平厌恶行为的供应链网络均衡研究

段丁钰,周岩*,张华民,徐明姣   

  1. 青岛大学管理科学与工程系, 山东 青岛 266071
  • 收稿日期:2016-08-30 出版日期:2017-05-20 发布日期:2017-05-15
  • 通讯作者: 周岩(1979— ),女, 博士, 副教授, 研究方向为供应链管理.E-mail:yanyanz22@hotmail.com E-mail:18354263922@sina.cn
  • 作者简介:段丁钰(1992— ), 女, 硕士研究生, 研究方向为供应链管理.E-mail:18354263922@sina.cn
  • 基金资助:
    国家自然科学基金资助项目(71371102);中国博士后科学基金面上资助项目(2016M592151);山东省研究生教育创新计划项目(SDYY15032);山东省自然科学基金资助项目(ZR2016GM01)

The study of the supply chain network equilibrium model with retailers inequity aversion behavior

DUAN Zheng-yu, ZHOU Yan*, ZHANG Hua-min, XU Ming-jiao   

  1. Department of Management Science and Engineering, Qingdao University, Qingdao 266071, Shandong, China
  • Received:2016-08-30 Online:2017-05-20 Published:2017-05-15

摘要: 将行为经济学中的不公平厌恶引入供应链网络均衡问题, 构建了由多个公平中性的制造商、多个不公平厌恶的零售商及需求市场组成的供应链网络均衡模型。 基于不公平厌恶理论, 建立了考虑不公平厌恶的零售商效用函数; 利用变分不等式和互补理论, 得到网络中各决策者及整个供应链网络均衡的条件。 研究结果表明, 无论是零售商存在不利不公平厌恶还是有利不公平厌恶行为, 其效用都低于其公平中性时的最大利润, 且零售商的不公平厌恶程度越高, 其交易量和效用越低。 最后通过算例进行分析验证。

关键词: 供应链网络, 变分不等式, 不公平厌恶

Abstract: The decision makers inequity aversion behavior was embedded into the supply chain network equilibrium problems. The supply chain network was composed of many equity-neutral manufacturers, inequity-averse retailers and demand markets. Based on the inequity aversion theory, the retailers utility function was established, and the equilibrium conditions of all decision-makers and the supply chain network were modeled based on the variational inequality and the complementary theory. The results show that the utility of the retailer, who has advantageous or disadvantageous inequity-averse behavior, is lower than that of the equity-neutral retailer. Moreover, the transaction quantity and the utility of the retailer both decrease with the increase of the inequity-averse coefficient. Finally, numerical examples are solved to prove the above conclusions.

Key words: supply chain network, inequity aversion, variational inequality

中图分类号: 

  • F274
[1] TVERSKY A, KAHNEMAN D. Prospect theory: an analysis of decision under risk[J]. Econometrica, 1979, 47(2):263-291.
[2] KAHNEMAN D, TVERSKY A. Advances in prospect theory: cumulative representation of uncertainty[J]. Journal of Risk and Uncertainty, 1992, 5(4):297-323.
[3] LOOMES G, SUGDEN R. Regret theory: an alternative theory of rational choice under uncertainty[J]. Economic Journal, 1982, 92(368):805-24.
[4] KAHNEMAN D, THALER R H. Fairness and the assumptions of economics[J]. Journal of Business, 1986, 59(4):285-300.
[5] BERG J, DICKHAUT J, MCCABE K. Trust, reciprocity, and social history[J]. Games and Economic Behavior, 1995, 10(1):122-142.
[6] GUTH W, SCHMITTBERGER R, SCHWARZE B. An experimental analysis of ultimatum bargaining[J]. Journal of Economic Behavior and Organization, 2010, 3(4):367-388.
[7] FEHR E, SCHMIDT K M. A theory of fairness, competition and cooperation[J]. Quarterly Journal of Economics, 1999, 114(3):817-868.
[8] BOLTON G. A comparative model of bargaining: theory and evidence[J]. American Economic Review, 1991, 81(5):1096-1136.
[9] KONRAD K A, LOMMERUD K E. Relative standing comparisons, risk taking and safety regulations[J]. Journal of Public Economics, 1993, 51(3):345-358.
[10] CALISKAN-DEMIRAG O, CHEN Youhua, LI Jianbin. Channel coordination under fairness concerns and nonlinear demand[J]. European Journal of Operational Research, 2010, 207(3):1321-1326.
[11] CHOI S, MESSINGER P R. The role of fairness in competitive supply chain relationships: an experimental study[J]. European Journal of Operational Research, 2016, 251(3):798-813.
[12] LI Qinghua, LI Bo. Dual-channel supply chain equilibrium problems regarding retail services and fairness concerns[J]. Applied Mathematical Modelling, 2016, 40(15):7349-7367.
[13] QIN Fei, MAI Feng, MICHAEL J, et al. Supply-chain performance anomalies: fairness concerns under private cost information[J]. European Journal of Operational Research, 2016, 252(1):170-182.
[14] ZHOU Yanju, BAO Maojing, CHEN Xiaohong, et al. Co-op advertising and emission reduction cost sharing contracts and coordination in low-carbon supply chain based on fairness concerns[J]. Journal of Cleaner Production, 2016, 133:402-413.
[15] NIE Tengfei, DU Shaofu. Dual-fairness supply chain with quantity discount contracts[J]. European Journal of Operational Research, 2017, 258(2):491-500.
[16] 杜少甫, 杜婵, 梁樑, 等. 考虑公平关切的供应链契约与协调[J]. 管理科学学报, 2010,13(11):41-48. DU Shaofu, DU Chan, LIANG Liang, et al. Supply chain coordination considering fairness concerns[J]. Journal of Management Sciences in China, 2010, 13(11):41-48.
[17] 杜少甫, 朱贾昂, 高冬,等. Nash讨价还价公平参考下的供应链优化决策[J]. 管理科学学报, 2013, 16(3):68-72. DU Shaofu, ZHU Jiaang, GAO Dong, et al. Optimal decision-making for Nash bargaining fairness concerned newsvendor in two-level supply chain[J]. Journal of Management Sciences in China, 2013, 16(3):68-72.
[18] 张克勇, 吴燕, 侯世旺. 具公平关切零售商的闭环供应链差别定价策略研究[J]. 中国管理科学, 2014, 22(3):51-58. ZHANG Keyong, WU Yan, HOU Shiwang. Differential pricing strategy of considering retailers fairness concerns in the closed-loop supply chain[J]. Chinese Journal of Management Science, 2014, 22(3):51-58.
[19] 丁川, 陈璐. 考虑风险企业家有公平偏好的风险投资激励机制——基于显性努力和隐性努力的视角[J]. 管理科学学报, 2016, 19(4):104-117. DING Chuan, CHEN Lu. Incentive mechanism for venture investment when venture entrepreneurs have fairness preferences-from explicit efforts and implicit efforts perspectives[J]. Journal of Management Sciences in China, 2016, 19(4):104-117.
[20] 石松, 颜波, 石平. 考虑公平关切的自主减排低碳供应链决策研究[J]. 系统工程理论与实践, 2016, 36(12):3079-3091. SHI Song, YAN Bo, SHI Ping. Pricing and coordination decisions in autonomous reduction low-carbon supply chain with fairness concerns[J]. System Engineering Theory and Practice, 2016, 36(12):3079-3091.
[21] NAGURNEY A, DONG June, ZHANG Ding. A supply chain network equilibrium model[J]. Transportation Research Part E: Logistics and Transportation Review, 2002, 38(5):281-303.
[22] DONG June, ZHANG Ding, Nagurney A. A supply chain network equilibrium model with random demand[J]. European Journal of Operational Research, 2004, 156(1):194-212.
[23] YANG Guangfen, WANG Zhiping, LI Xiaoqiang. The optimization of the closed-loop supply chain network[J]. Transportation Research Part E: Logistics and Transportation Review, 2009, 45(1):16-28.
[24] QIANG Qiang, KE Ke, ANDERSON T, et al. The closed-loop supply chain network with competition, distribution channel investment, and uncertainties[J]. Omega, 2013, 41(2):186-194.
[25] 张铁柱, 刘志勇, 滕春贤. 多商品流供应链网络均衡模型的研究[J]. 系统工程理论与实践, 2005, 25(7):61-66. ZHANG Tiezhu, LIU Zhiyong, TENG Chunxian. A multi-commodity flow supply chain network equilibrium model[J]. System Engineering Theory and Practice, 2005, 25(7):61-66.
[26] 滕春贤, 姚锋敏, 胡宪武. 具有随机需求的多商品流供应链网络均衡模型的研究[J]. 系统工程理论与实践, 2007, 27(10):77-83. TENG Chunxian, YAO Fengmin, HU Xianwu. Study on multi-commodity flow supply chain network equilibrium model with random demand[J]. System Engineering Theory and Practice, 2007, 27(10):77-83.
[27] 周岩, 蒋京龙, 孙浩, 等. 面向能源和低碳发展的多准则供应链网络均衡[J]. 系统工程学报, 2014, 29(5):652-661. ZHOU Yan, JIANG Jinglong, SUN Hao, et al. Multicriteria supply chain network equilibrium with energy and low carbon development[J]. Journal of Systems Engineering, 2014, 29(5):652-661.
[28] 杨玉香, 吴增源, 黄祖庆. 考虑技术投资的供应链网络下可交易污染排放许可均衡问题[J]. 中国管理科学, 2016, 24(4):74-82. YANG Yuxiang, WU Zengyuan, HUANG Zuqing. Marketable pollution permits equilibrium problem in supply chain network with technological investment[J]. Chinese Journal of Management Science, 2016, 24(4):74-82.
[29] 胡劲松, 赵光丽. 具有损失规避零售商的模糊供应链网络均衡[J]. 控制与决策, 2014, 29(10):1899-1906. HU Jinsong, ZHAO Guangli. Supply chain network equilibrium with loss-averse retailers under fuzzy demand[J]. Control and Decision, 2014, 29(10):1899-1906.
[30] KORPELEVICH G M. The extragradient method for finding saddle points and other problems[J]. Matekon, 1977, 13:35-49.
[1] 杨延涛. 求解单调变分不等式问题的一种修正的次梯度超梯度方法[J]. 山东大学学报(理学版), 2018, 53(2): 38-45.
[2] 陈霞,陈纯荣. 广义向量变分不等式的间隙函数与误差界[J]. 山东大学学报(理学版), 2017, 52(4): 1-5.
[3] 周岩, 孙浩, 王晶晶, 韩瑞京, 蒋京龙. 基于随机需求和顾客满意度的多期闭环供应链网络均衡[J]. 山东大学学报(理学版), 2014, 49(07): 38-49.
[4] 徐兵,熊勇. 需求依赖库存量的n-2型供应链网络决策模型研究[J]. J4, 2012, 47(12): 14-21.
[5] . 求解变分不等式的修正三步迭代法[J]. J4, 2009, 44(6): 69-74.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!