您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

山东大学学报(理学版) ›› 2016, Vol. 51 ›› Issue (4): 118-126.doi: 10.6040/j.issn.1671-9352.0.2015.275

• • 上一篇    下一篇

FI代数中基于相对非的滤子

吴苏朋1,2,赵彬1*   

  1. 1.陕西师范大学数学与信息科学学院, 陕西 西安 710062;2.安康学院数学与统计系, 陕西 安康 725000
  • 收稿日期:2015-06-08 出版日期:2016-04-20 发布日期:2016-04-08
  • 通讯作者: 赵彬(1965— ), 男, 博士, 教授, 研究方向为格上拓扑与模糊推理. E-mail:zhaobin@snnu.edu.cn E-mail:wusupeng@snnu.edu.cn
  • 作者简介:吴苏朋(1980— ), 女, 博士研究生, 讲师, 研究方向为模糊逻辑. E-mail:wusupeng@snnu.edu.cn
  • 基金资助:
    国家自然科学基金(11531009,11501343);中央高校基本科研业务费专项基金(GK201501001)

The filters based on relative negations in FI Algebras

WU Su-peng1,2, ZHAO Bin1*   

  1. 1. College of Mathematics and Information Science, Shaanxi Normal University, Xian 710062, Shaanxi, China;
    2. Department of Mathematics and Statistics, Ankang University, Ankang 725000, Shaanxi, China
  • Received:2015-06-08 Online:2016-04-20 Published:2016-04-08

摘要: 引入了FI代数中相对非的概念, 讨论了相对非的性质。利用相对非给出了FI代数中相对正则滤子、扩展相对正则滤子和弱相对正则滤子的概念, 得到了这些滤子的特征定理。分析了FI代数中基于滤子的相对双补元之集的代数性质,得到了扩展相对正则滤子的应用。

关键词: 相对正则滤子, 扩展相对正则滤子, FI代数, 弱相对正则滤子

Abstract: The notion of relative negations in FI-algebras is proposed and some properties of it are discussed. Based on the relative negations, relative regular filters, extended relative regular filters and weak relative regular filters are defined, Some characteristic theorems of them are obtained. Algebraic properties of the set of relative double complemented elements based on the filters are introduced and the applications of extended relative regular filters are showd.

Key words: relative regular filter, weak relative regular filter, FI-algebra, extended relative regular filter

中图分类号: 

  • O141.1
[1] HAJEK P. Metamathematics of fuzzy logic[M]. Dordrecht: Kluwer Academic Publishers, 2000.
[2] WANG Guojun, ZHOU Hongjun. Introduction to mathematical logic and resolution principle[M]. Beijing: Science Press and Alpha Science International Limited, 2009.
[3] 徐扬. 格蕴涵代数[J]. 西南交通大学学报, 1993, 89(1):20-27. XU Yang. Lattice implication algebras[J]. Journal of Southwest Jiaotong University 1993, 89(1):20-27.
[4] 吴望名. Fuzzy蕴涵代数[J]. 模糊系统与数学, 1990, 4(1):56-64. WU Wangming. Fuzzy implication algebras[J]. Fuzzy Systems and Mathematics, 1990, 4(1):56-64.
[5] RUDEANU S. On the Glivenko-Frink theorem for Hilbert algebras[J]. Annals of the University of Craiova, Mathematics and Computer Series, 2007, 34:72-77.
[6] ZHOU Hongjun, ZHAO Bin. Generalized Bosbach and Riecan states based on relative negations in residuated lattices[J]. Fuzzy Sets and Systems, 2012, 187:33-57.
[7] TURUNEN E. Boolean deductive systems of BL-algebras[J]. Arch Math, 2001, 40:467-473
[8] HAVESHKI M, BORUMAND S A, ESLAMI E. Some types of filters in BL-algebras[J]. Soft Computing, 2006, 10(8):657-664.
[9] KONDO M, DUDEK W A. Filter theory of BL-algebras[J]. Soft Computing, 2008, 12(5):419-423.
[10] BORUMAND S A, MOTAMED S. Some results in BL-algebras[J]. Mathematical Logic Quarterly 2009, 55(6):649-658.
[11] BORZOOEI R A, KHOSRAVI SHOAR S, AMERI R. Some types of filters in MTL-algebras[J]. Fuzzy Sets and Systems, 2012, 187:92-102.
[12] FARAHANI H, ZAHIRI O. Algebraic view of MTL-filters[J]. Annals of the University of Craiova, Mathematics and Computer Series, 2013, 40(1):34-44.
[13] ZHU Yiquan, XU Yang. On filter theory of residuated lattices[J]. Information Sciences, 2010, 180:3614-3632.
[14] MA Zhenming, HU Baoqing. Characterizations and new subclasses of I-filters in residuated lattices[J]. Fuzzy Sets and Systems, 2014, 247:92-107.
[15] CIGNOLI R, TORRENS A. Glivenko like theorems in natural expansions of BCK-logic[J]. Mathematical Logic Quarterly, 2004, 50(2):111-125.
[16] 邹庭荣. PFI代数及其P滤子[J]. 数学杂志, 2000, 20(3):323-328. ZOU Tingrong. PFI-algebras and its P-filters[J]. Journal of Mathematics, 2000, 20(3):323-328.
[17] 邹庭荣, 肖云萍. FI代数的滤子[J]. 模糊系统与数学, 2003, 17(3):80-85. ZOU Tingrong, Xiao Yunping. Filters of fuzzy implicational algebras[J]. Fuzzy Systems and Mathematics, 2003, 17(3):80-85.
[18] 刘春辉. Fuzzy蕴涵代数的正则滤子[J]. 计算机工程与应用, 2014, 50(20):41-44. LIU Chunhui. Regular filters in FI-Algebras[J]. Computer Engineering and Applications, 2014, 50(20):41-44.
[19] 王国俊. MV-代数、BL-代数、R0-代数与多值逻辑[J]. 模糊系统与数学, 2002, 16(2):1-15. WANG Guojun. MV-Algebras、BL-Algebras、R0-Algebras and Multiple-Valued Logic[J]. Fuzzy Systems and Mathematics, 2002, 16(2):1-15.
[20] 吴洪博, 汪宁. 基于正则FI-代数的MT理想及其应用[J]. 电子学报, 2013, 41(7):1389-1394. WU Hongbo, WANG Ning. MT Ideals of regular FI-algebras with their applications[J]. Acta Electronica Sinica, 2013, 41(7):1389-1394.
[21] PEI Daowu. A survey of fuzzy implication algebras and their axiomatization[J]. International Journal of Approximate Reasoning, 2014, 55(8):1643-1658.
[22] LUO Qingjun. Notes on “A survey of fuzzy implication algebras and their axiomatization”[J]. International Journal of Approximate Reasoning, 2015, 57:64-68.
[23] 刘春辉, 徐罗山. Fuzzy蕴涵代数的MP滤子[J]. 模糊系统与数学, 2009, 23(2):1-6. LIU Chunhui, XU Luoshan. MP filters of fuzzy implicational algebras[J]. Fuzzy Systems and Mathematics, 2009, 23(1):1-6.
[24] 刘春辉. Fuzzy蕴涵代数的关联MP滤子和交换MP滤子[J]. 模糊系统与数学, 2012, 26(6):31-37. LIU Chunhui. Implicative and commutative MP filters in fuzzy implicational algebras[J]. Fuzzy Systems and Mathematics, 2010, 26(6):31-37.
[25] 刘春辉, 徐罗山. Fuzzy蕴涵代数的滤子理论[J]. 山东大学学报(理学版), 2013, 48(9):73-77. LIU Chunhui, XU Luoshan. Theory of filters in fuzzy implicational algebras[J]. Journal of Shandong University(Natural Science), 2013, 48(9):73-77.
[26] ZHOU Hongjun, ZHAO Bin. Stone-like representation theorems and three-valued filters in R0-algebras(nilpotent minimum algebras)[J].Fuzzy Sets and Systems, 2011, 162:1-26.
[27] MURESAN C. Dense elements and classes of residuated lattices[J]. Bull Math Soc Sci Math Roumanie, 2010, 53(1):11-24.
[1] 刘春辉1,2. 滤子化软FI代数[J]. J4, 2012, 47(11): 94-98.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!