您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

山东大学学报(理学版) ›› 2016, Vol. 51 ›› Issue (4): 127-134.doi: 10.6040/j.issn.1671-9352.0.2015.268

• • 上一篇    

一类Kolmogorov型方程的系数反演问题

蔡超   

  1. 兰州交通大学数理学院, 甘肃 兰州 730070
  • 收稿日期:2015-06-08 出版日期:2016-04-20 发布日期:2016-04-08
  • 作者简介:蔡超(1989— ),女,硕士研究生,研究方向为数学物理反问题. E-mail:cch92215@163.com
  • 基金资助:
    国家自然科学基金资助项目(11261029,11461039);甘肃省自然科学基金资助项目(145RJZA124)

An inverse problem of identifying the coefficient in a Kolmogorov type equation

CAI Chao   

  1. Department of Mathematics, Lanzhou Jiaotong University, Lanzhou 730070, Gansu, China
  • Received:2015-06-08 Online:2016-04-20 Published:2016-04-08

摘要: 研究了一类Kolmogorov型方程的对流系数反演问题,这类问题在很多科学研究和工程领域都有重要的应用,其特点是未知系数是同时依赖于空间变量x和时间变量t的函数。基于最优控制理论框架下,先将原问题转化为一个优化问题,并证明了控制泛函最优解的存在性及它满足的必要条件,然后证明了最优解的稳定性和唯一性。

关键词: Kolmogorov型方程, 存在性, 唯一性, 最优控制, 稳定性, 反问题

Abstract: This work investigates an inverse problem of reconstructing the convection coefficient in a Kolmogorov equation from the final measurement data, which has important application in many fields of applied science. Compared with ordinary inverse problems, the unknown coefficient in this work depends on both the space variable x and the time variable t. On the basis of the optimal control framework, the identification problem is transformed into an optimization problem and the existence of the minimizer for the cost functional is established. Then necessary condition of the minimizer is obtained. After the necessary condition of the minimizer satisfied, the stability and uniqueness of the minimizer are deduced.

Key words: optimal control, existence, uniqueness, inverse problem, stability, Kolmogorov equation

中图分类号: 

  • O175.26
[1] ZHAO Xiaofeng, HUANG Sixun, KANG Linchun. New method to solve electromagnetic parabolic equation[J]. Appl Math Mech, 2013, 34(11):1373-1382.
[2] JIANG Daijun, FENG Hui, ZOU Jun. Convergence rates of Tikhonov regularizations for parameter identification in a parabolic-elliptic system[J]. Inverse Problems, 2012, 28(10), 104002(20pp).
[3] KOSTIN A B. The inverse problem of recovering the source in a parabolic equation under a condition of nonlocal observation[J]. Sbornik: Mathematics, 2013, 204(10):1391-1434.
[4] SAKAMOTO K, YAMAMOTO M. Inverse heat source problem from time distributing overdetermination[J]. Appl Anal, 2009, 88(5):735-748.
[5] YANG Liu, YU Jianning, DENG Zuicha. An inverse problrem of identifying the coefficient of parabolic equation[J]. Appl Math Model, 2008, 32:1984-1995.
[6] DENG Zuicha, YANG Liu. An inverse problrem of identifying the radiative coefficient in a degenerate parabolic equation[J]. Chin Annal Math, 2014, 35B(3):355-382.
[7] YANG Liu, DEHGHAN M, YU Jianning, et al. Inverse problrem of time-dependent heat sources numerical reconstruction[J]. Math and Comp in Simul, 2011, 81:1656-1672.
[8] WEI Ting, WANG Jungang. A modified quasi-boundary value method for an inverse source problem of the time-fractional diffusion equation[J]. Appl Numer Math, 2014, 78:95-111.
[9] YANG Fan, FU Chuli. A mollification regularization method for the inverse spatial-dependent heat source problem[J]. J Comput Appl Math, 2014, 255:555-567.
[10] DENG Zuicha, YANG Liu, YU Jianning, et al. Identifying the radiative coefficient of an evolutional type heat conduction equation by optimization method[J]. J Math Anal Appl, 2010, 362(1):210-223.
[11] MA Yunjie, FU Chuli, ZHANG Yuanxiang. Identification of an unknown sourse depending on both time and space variables by a variational method[J]. Appl Math Model, 2012, 36:5080-5090.
[12] 姜礼尚. 金融衍生产品定价的数学模型与案例分析[M]. 北京: 高等教育出版社, 2008. JIANG Lishang. Mathematical models and case analysis in financial derivetives pricing[M]. Beijing: Higher Education Press, 2008.
[13] 姜礼尚. 期权定价的数学模型与方法[M]. 北京: 高等教育出版社, 2003. JIANG Lishang. Mathematical models and methods for option pricing[M]. Beijing: Higher Education Press, 2003.
[1] 曹雪靓,雒志学. 污染环境下森林发展系统的最优控制[J]. 山东大学学报(理学版), 2018, 53(7): 15-20.
[2] 刘华,叶勇,魏玉梅,杨鹏,马明,冶建华,马娅磊. 一类离散宿主-寄生物模型动态研究[J]. 山东大学学报(理学版), 2018, 53(7): 30-38.
[3] 王素云,李永军. 带超越共振点非线性项的二阶常微分方程边值问题的可解性[J]. 山东大学学报(理学版), 2018, 53(6): 53-56.
[4] 王娇. 一类非线性二阶常微分方程 Dirichlet问题正解的存在性[J]. 山东大学学报(理学版), 2018, 53(6): 64-69.
[5] 肖新玲. 由马氏链驱动的正倒向随机微分方程[J]. 山东大学学报(理学版), 2018, 53(4): 46-54.
[6] 叶芙梅. 带导数项共振问题的可解性[J]. 山东大学学报(理学版), 2018, 53(2): 25-31.
[7] 甄苇苇,曾剑,任建龙. 基于变分理论与时间相关的抛物型反源问题[J]. 山东大学学报(理学版), 2018, 53(10): 61-71.
[8] 宋亮,冯金顺,程正兴. 多重Gabor框架的存在性与稳定性[J]. 山东大学学报(理学版), 2017, 52(8): 17-24.
[9] 张泰年,李照兴. 一类退化抛物型方程反问题的收敛性分析[J]. 山东大学学报(理学版), 2017, 52(8): 35-42.
[10] 白宝丽,张建刚,杜文举,闫宏明. 一类随机的SIR流行病模型的动力学行为分析[J]. 山东大学学报(理学版), 2017, 52(4): 72-82.
[11] 张莎,贾梅,李燕,李晓晨. 分数阶脉冲微分方程三点边值问题解的存在性和唯一性[J]. 山东大学学报(理学版), 2017, 52(2): 66-72.
[12] 李金兰,梁春丽. 强Gorenstein C-平坦模[J]. 山东大学学报(理学版), 2017, 52(12): 25-31.
[13] 何志乾, 苗亮英. 带弱奇性的二阶阻尼微分方程正周期解的存在性[J]. 山东大学学报(理学版), 2017, 52(10): 84-88.
[14] 陈彬. 格林函数变号的三阶周期边值问题[J]. 山东大学学报(理学版), 2016, 51(8): 79-83.
[15] 苏艳. 共振离散二阶Neumann问题解的存在性[J]. 山东大学学报(理学版), 2016, 51(6): 37-41.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!