山东大学学报(理学版) ›› 2016, Vol. 51 ›› Issue (8): 29-34.doi: 10.6040/j.issn.1671-9352.0.2016.148
王倩
WANG Qian
摘要: 给出了k-连通图生成树和完美匹配上的可收缩边数目,得到如下结果:任意断片的阶都大于「k/2的k-连通图中生成树上至少有4条可收缩边;若该k-连通图中存在完美匹配,则完美匹配上至少有「k/2+1条可收缩边。
中图分类号:
[1] BONDY J A, MURTY U S R. Graph theory with applications [M]. London: The Macmillan Press Ltd, 1976. [2] MARTIONV N. Uncontractible 4-connected graphs[J]. Graph Theory, 1982, 6(3):343-344. [3] KRIESELL M. A degree sum condition for the existence of a contractible edge in a k-connected graph[J]. Comb Theory Ser, 2001, B82:81-101. [4] 王珊珊.k-连通图中最长圈上可收缩边的数目[J].山东大学学报(理学版),2015,50(10):27-31. WANG Shanshan. On the number of contractible edges of longest cycles in k-connected graphs[J]. Journal of Shandong University(Natural Science), 2015, 50(10):27-31. [5] KRIESELL M. A survey on contractible edges in graph of a prescribed vertex connectivity[J]. Graphs and Combinatorics, 2002, 18(1):1-30. [6] TUTTE W T.A theory of 3-connected graphs[J]. Indag Math, 1961, 23:441-455. [7] DEAN N. Distribution of contractible edges in k-connected graphs[J]. Comb. Theory, Ser.B, 1990, 48:1-5. [8] EGAWA Y. Contractible edges in n-connected graphs with minimum degree greater than or equal to[5n/4] [J]. Graphs Comb, 1990, 7:15-21. [9] 杨朝霞.某些5-连通图中最长圈上的可收缩边[J].山东大学学报(理学版),2008,43(6):12-14. YANG Zhaoxia. The contractible edges of the longest cycle in some 5-connected graphs[J]. Journal of Shandong University(Natural Science), 2008, 43(6):12-14. |
[1] | 王珊珊, 齐恩凤. k-连通图中最长圈上可收缩边的数目[J]. 山东大学学报(理学版), 2015, 50(10): 27-31. |
[2] | 姚明1,姚兵2*,陈祥恩2. 立方Halin图的完备色数[J]. J4, 2012, 47(2): 65-70. |
[3] | 肖海强1,2,张昭1*. λ3,q-连通图的刻画[J]. J4, 2010, 45(6): 27-30. |
[4] | 王洪伟. 二部图匹配强迫数的谱[J]. J4, 2009, 44(12): 30-35. |
[5] | 杨朝霞 . 某些5-连通图中最长圈上的可收缩边[J]. J4, 2008, 43(6): 12-14 . |
|