山东大学学报(理学版) ›› 2015, Vol. 50 ›› Issue (04): 1-7.doi: 10.6040/j.issn.1671-9352.0.2014.160
• 论文 • 下一篇
赵攀1,2, 肖庆宪1
ZHAO Pan1,2, XIAO Qing-xian1
摘要: 考虑资产收益率分布的尖峰厚尾、长期相依和资产价格的均值回复性,选取具有尖峰厚尾和长期相依特征的Tsallis熵分布及均值回复性的O-U过程建立资产价格的运动模型,运用随机微分和等价测度鞅方法研究了幂型欧式期权的定价问题,得到了资产价格遵循最大化Tsallis熵分布的幂型欧式看涨及看跌期权的定价公式,该公式推广了经典的Black-Scholes公式,拓展了已有文献的结论.
中图分类号:
[1] BLACK F, SCHOLES M. The pricing of options and corporate liabilities[J]. Journal of Political Economy, 1973, 81:133-155. [2] MANDELBROT B. The variation of certain speculative pricings[J]. Journal of Business, 1963, 36:394-419. [3] FAMA E F. The behavior of stock market prices[J]. Journal of Business, 1965, 38: 34-105. [4] BLATTBERG R, GONEDES N. A comparison of stable and student distributions as statistical models for stock prices[J]. Journal of Business, 1974, 47:244-280. [5] CONT R. Empirical properties of asset returns: stylized facts and statistical issues[J]. Quantitative Finance, 2001, 1:223-236. [6] LO A. Long term memory in stock market prices[J]. Econometrica, 1991, 59:1279-1313. [7] LUX T. The stable Paretian hypothesis and the frequency of large returns: an examination of major German stocks[J]. Applied Financial Economics, 1996, 6:463-485. [8] DING Zhuanxin, GRANGER C W J, ENGLE R F. A long memory property of stock market returns and a new model[J]. Journal of Empirical Finance, 1993, 1(1):83-106. [9] 闫海峰, 刘三阳. 股票价格遵循Ornstein-Uhlenback过程的期权定价[J]. 系统工程学报, 2003, 20(11):429-434. YAN Haifeng, LIU Sanyang. Pricing options on stocks driven by Ornstein-Uhlenback process[J]. Journal of Systems Engineering, 2003, 20(11):429-434. [10] 赵巍,何建敏. 股票价格遵循分数Ornstein-Uhlenback过程的期权定价模型[J]. 中国管理科学, 2007, 15(3):1-5. ZHAO Wei, HE Jianmin. Model of option pricing driven by fractional Ornstein-Uhlenback process[J]. Chinese Journal of Management Science, 2007, 15(3):1-5. [11] 刘坚, 文凤华, 马超群. 欧式期权和交换期权在随机利率及O-U过程下的精算定价方法[J]. 系统工程理论与实践, 2009, 29(12):118-124. LIU Jian, WEN Fenghua, MA Chaoqun. Actuarial pricing approach to Europe option and exchange option under stochastic interest rates and O-U process[J]. Systems Engineering: Theory & Practice, 2009, 29(12):118-124. [12] KOZUKI N, FUCHIKAMI N. Dynamical model of financial markets: fluctuating‘temperature’causes intermittent behavior of price changes[J]. Physica A, 2003, 329(1-2):222-230. [13] RYUJI I, MASAYOSHI I. Time-series analysis of foreign exchange rates using time-dependent pattern entropy[J]. Physica A, 2013, 392:3344-3350. [14] MICHAEL F, JOHNSON M D. Financial market dynamics[J]. Physica A, 2003, 32:525-534. [15] OREN J TAPIERO. A maximum (non-extensive) entropy approach to equity options bid-ask spread[J]. Physica A, 2013, 292:3051-3060. [16] BORLAND L. A Theory of Non-Gaussian Option pricing[J]. Quantitative Finance, 2002, 2:415-431. [17] YURI A, KATZ, LI Tian. q-Gaussian distributions of leverage returns, first stopping times, and default risk valuations[J]. Physica A, 2013, 292:4989-4996. [18] ADRIANA P, FERNANDO M, REINALDO R, et al. Value-at-risk and Tsallis statistics: risk analysis of the aerospace sector[J]. Physica A, 2004, 344:554-561. [19] PLASTINO A R, PLASTINO A. Non-extensive statistical mechanics and generalized Fokker-Planck equation[J]. Physica A, 1995, 222:347-354. |
[1] | 冯德成,张潇,周霖. 弱鞅的一类极小值不等式[J]. 山东大学学报(理学版), 2017, 52(8): 65-69. |
[2] | 张节松. 现代风险模型的扩散逼近与最优投资[J]. 山东大学学报(理学版), 2017, 52(5): 49-57. |
[3] | 冯德成,王晓艳,高玉峰. 基于Y函数的条件N-弱鞅的最大φ-不等式[J]. 山东大学学报(理学版), 2017, 52(2): 91-96. |
[4] | 隋圆圆,杨维强*. 赌博策略及其在资金管理中的应用[J]. J4, 2013, 48(05): 97-104. |
[5] | 苗杰. 带有股利分配的可分离债券的定价[J]. J4, 2012, 47(9): 110-115. |
[6] | 龚小兵1,2. 弱鞅的Whittle型不等式及其应用[J]. J4, 2011, 46(9): 112-116. |
[7] | 黄玉娟1, 于文广2. 稀疏过程下保费与理赔相关的风险模型的破产概率[J]. J4, 2011, 46(7): 56-59. |
[8] | 许聪聪1,刘新平2. 新型利率模型下标的资产服从跳-扩散过程的期权定价[J]. J4, 2011, 46(7): 96-100. |
[9] | 于文广1,黄玉娟2. 干扰条件下变破产下限多元风险模型的破产概率[J]. J4, 2011, 46(3): 58-62. |
[10] | 苗杰1,师恪2,蔡华1. 跳扩散模型下的可分离债券的定价[J]. J4, 2010, 45(8): 109-117. |
[11] | 朱永刚,于林. 向量值弱Orlicz鞅空间的弱原子分解[J]. J4, 2010, 45(5): 95-100. |
[12] | 陈祥利. 脆弱期权的公司价值分形定价模型[J]. J4, 2010, 45(11): 109-114. |
[13] | 于文广1 ,于红彬2 . 带扩散扰动项的保费随机收取的再保险与最终破产概率[J]. J4, 2009, 44(4): 84-87 . |
[14] | 肖应雄. 泛Clifford鞅的BurkholderGundy不等式[J]. J4, 2009, 44(3): 61-64 . |
[15] | 孟维维 于林. Q1空间与QΦ空间的鞅变换[J]. J4, 2009, 44(10): 75-79. |
|