山东大学学报(理学版) ›› 2015, Vol. 50 ›› Issue (04): 8-13.doi: 10.6040/j.issn.1671-9352.0.2014.240
冶建华, 马明
YE Jian-hua, MA Ming
摘要: δ 冲击模型是可靠性数学中重要的冲击模型,它在保险、交通、关系营销中等许多领域都有重要的应用.定义了一类离散开型截断δ冲击模型,讨论了冲击间隔服从格点分布的离散开型截断δ冲击模型的寿命性质,在任意的失效临界值情形下,得到了系统寿命的精确分布及期望.特别地作为一个推论,得到了冲击间隔服从几何分布(即伯努利过程)的开型截断δ冲击模型的寿命分布.
中图分类号:
[1] 李泽慧.与Poisson流有关的几个概率分布及其在城市交通拥挤问题中的应用[J]. 兰州大学学报:自然科学版,1984,S1:127-136. LI Zehui. Some distributions related to Poisson processes and their application in solving the problem of traffic jam[J]. Journal of Lanzhou University: Natural Sciences, 1984, S1:127-136. [2] 李泽慧,黄宝胜,王冠军.一种冲击源下冲击模型的寿命分布及其性质[J]. 兰州大学学报:自然科学版,1999,35(4):1-7. LI Zehui, HUANG Baosheng, WANG Guanjun. Life distribution and its properties of shock models under random shocks[J]. Journal of Lanzhou University: Natural Sciences, 1999, 35(4):1-7. [3] 李泽慧,白建明,孔新兵.冲击模型的研究进展[J]. 质量与可靠性,2005(3):31-36. LI Zehui, BAI Jianming, KONG Xinbing, et al. Progress of research on shock models[J]. Quality and Reliability, 2005(3):31-36. [4] 李泽慧,白建明,孔新兵.冲击模型:进展与应用[J]. 数学进展,2007,36(4):385-397. LI Zehui, BAI Jianming, KONG Xingbing. Shock models: advances and applications[J]. Advances in Mathematics China, 2007, 36(4):385-397. [5] 梁小林, 李泽慧.对偶δ-冲击模型的最优更换策略[C]//中国现场统计研究会第12届学术年会论文集.北京:[s.n.], 2005:211-214. LIANG Xiaolin, LI Zehui. Optimal replacement policy of antithetic δ shock model[C]//Proceedings of the 12th Symposium of Chinese Field Statistical Research. Beijing:[s.n.], 2005:211-214. [6] TANG Yayong, LAM Yeh. A δ-shock maintenance model for a deteriorating system[J]. European Journal of Operational Research, 2006, 168(2):541-556. [7] BAI Jianming, LI Zehui, KONG Xingbing. Generalized shock models based on a cluster point process[J]. IEEE Transactions on Reliability, 2006, 55(3):542-550. [8] 唐亚勇,林埜.退化系统的对数正态δ冲击维修模型(英文)[J]. 四川大学学报:自然科学版,2006,43(1):59-65. TANG Yayong, Lam Yeh. A lognormal δ shock maintenance model for a deteriorating system (in English)[J]. Journal of Sichuan University: Natural Science Edition, 2006, 43(1):59-65. [9] LI Zehui, KONG Xingbing. Life behavior of δ-shock model[J]. Statistics & Probability Letters, 2007, 77(6):577-587. [10] LI Zehui, ZHAO Peng. Reliability analysis on the δ-shock model of complex systems[J]. IEEE Transactions on Reliability, 2007, 56(2):340-348. [11] 梁小林,李泽慧.可修系统的最优更换策略[J]. 湖南师范大学自然科学学报,2007,30(4):15-18. LIANG Xiaolin, LI Zehui. Optimal replacement policies for repairable system[J]. Journal of Natural Science of Hunan Normal University, 2007, 30(4):15-18. [12] 唐风琴,李泽慧.时倚泊松过程下的对偶δ-冲击模型[J]. 兰州大学学报:自然科学版,2007,43(4):1-4. TANG Fengqin, LI Zehui. Dual δ-shock models under time-dependent Poisson process[J]. Journal of Lanzhou University:Natural Sciences, 2007, 43(4):1-4. [13] 李泽慧,刘志,牛一.一般δ-冲击模型中无失效数据的Bayes统计推断[J]. 应用概率统计,2007,23(1):51-58. LI Zehui, LIU Zhi, NIU Yi. Bayes statistical inference on general δ-shock model with zero failure data[J]. Chinese Journal of Applied Probability, 2007, 23(1):51-58. [14] 梁小林,李泽慧.遭受外部冲击的检测模型[J]. 湖南大学学报:自然自科版,2008, 35(2):66-69. LIANG Xiaolin, LI Zehui. Random inspection model subject to external shocks[J]. Journal of Hunan University: Natural Sciences, 2008, 35(2):66-69. [15] 马明.δ冲击模型寿命分布的积分计算及M函数的性质[J]. 山东大学学报:理学版,2008,43(12):15-19. MA Ming. Computation of the integral of lifetime distribution in δ-shock model and properties of M function[J]. Journal of Shandong University: Naturnal Science, 2008, 43(12):15-19. [16] 马明.自激滤过的泊松过程[J]. 吉林大学学报:自然科学版,2009,47(4):711-715. MA Ming. Self-exciting filtered Poisson process[J]. Journal of Jilin University: Science Edition, 2009, 47(4):711-715. [17] 魏艳华,王丙参. δ冲击模型及随机检测[J]. 北京联合大学学报:自然科学版,2011,25(1):89-92. WEI Yanhua, WANG Bingcan. δ shock model and random inspection[J]. Journal of Beijing Union University: Natural Sciences, 2011, 25(1):89-92. [18] Serkan Eryilmaz. On the lifetime behavior of discrete time shock model[J]. Journal of Computational and Applied Mathematics, 2013, 237(1):384-388. [19] 冶建华,马明,赵芬芬,等,离散δ冲击模型的寿命性质[J]. 西北民族大学学报:自然科学版,2012,33(3):1-4. YE Jianhua, MA Ming, ZHAO Fenfen, et al. Lifetime properties of discrete δ shock model[J]. Journal of Northwest University for Nationalities: Natural Science, 2012, 33(3):1-4. [20] 何雪,冶建华,陈丽雅.冲击间隔服从泊松分布的离散δ冲击模型的可靠性分析[J]. 贵州师范大学学报:自然科学版,2012,30(6):65-68. HE Xue, YE Jianhua, CHEN Liya. The reliability analysis of the δ shock model based on interarrival time follows Poisson distribution[J]. Journal of Guizhou Normal University: Natural Sciences, 2012, 30(6):65-68. [21] 张攀,马明,余进玉,等.时间点服从0-1分布的离散截断δ冲击模型的寿命性质[J]. 甘肃联合大学学报:自然科学版,2012,26(5):24-26. ZHANG Pan, MA Ming, YU Jinyu, et al. Lifetime behavior of discrete censored δ shock model on arrival times obey the 0-1 distribution[J]. Journal of Gansu Lianhe University: Natural Sciences, 2012, 26(5):24-26. [22] 卢开澄,卢华明.组合数学[M]. 3版.北京:清华大学出版社,2002. LU Kaicheng, LU Huaming. Combinatorial mathematics[M]. 3rd ed. Beijing: Tsinghua University Press, 2002. |
[1] | 孔亮, 曹怀信. ε-近似保平方等腰正交映射的刻画与扰动[J]. 山东大学学报(理学版), 2015, 50(06): 75-82. |
[2] | 王尧, 张玖琳, 任艳丽. 幂零p.p.-环和幂零Baer环的Ore扩张[J]. 山东大学学报(理学版), 2015, 50(04): 76-81. |
[3] | 郑莹,马明*. 自激滤过的泊松过程的二阶矩[J]. J4, 2013, 48(09): 35-39. |
[4] | 李玲1,成国庆1,唐应辉2. 带预防性维修的冲击模型最优检测更换策略[J]. J4, 2011, 46(9): 122-126. |
[5] | 张琼,吴洪博*. BLΔ*系统中理论的Δ-根及广义Δ-MP问题[J]. J4, 2010, 45(4): 60-65. |
[6] | 赵书改1,曹怀信2*. 高维小波展开式的一致收敛性[J]. J4, 2010, 45(10): 89-92. |
[7] | 马明. δ冲击模型寿命分布的积分计算及M函数的性质[J]. J4, 2008, 43(12): 15-19. |
|