您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

山东大学学报(理学版) ›› 2015, Vol. 50 ›› Issue (04): 8-13.doi: 10.6040/j.issn.1671-9352.0.2014.240

• 论文 • 上一篇    下一篇

一般离散开型截断δ冲击模型的寿命分布

冶建华, 马明   

  1. 西北民族大学数学与计算机科学学院, 甘肃 兰州 730030
  • 收稿日期:2014-05-24 修回日期:2014-12-31 出版日期:2015-04-20 发布日期:2015-04-17
  • 通讯作者: 马明(1971-),男,博士,教授,研究方向为可靠性数学理论、客户寿命价值.E-mail:mm9252@qq.com E-mail:mm9252@qq.com
  • 作者简介:冶建华(1974-),男,硕士,教授,研究方向为可靠性数学理论、客户寿命价值.E-mail:471510084@qq.com
  • 基金资助:
    国家自然科学基金资助项目(11361049);甘肃省科技计划资助项目(甘肃省自然科学基金资助项目)(1308RJZA147);西北民族大学中央高校基本科研业务费专项基金资助项目(zyz2012082)

Lifetime distribution behavior of discrete open censored δ-shock model

YE Jian-hua, MA Ming   

  1. School of Computer Science and Information Engineering, Northwest University for Nationalities, Gansu 730030, Lanzhou, China
  • Received:2014-05-24 Revised:2014-12-31 Online:2015-04-20 Published:2015-04-17

摘要: δ 冲击模型是可靠性数学中重要的冲击模型,它在保险、交通、关系营销中等许多领域都有重要的应用.定义了一类离散开型截断δ冲击模型,讨论了冲击间隔服从格点分布的离散开型截断δ冲击模型的寿命性质,在任意的失效临界值情形下,得到了系统寿命的精确分布及期望.特别地作为一个推论,得到了冲击间隔服从几何分布(即伯努利过程)的开型截断δ冲击模型的寿命分布.

关键词: 离散型, 格点分布, &delta, 开型截断, 冲击模型

Abstract: The δ-shock model is an important shock model in reliability theory which has potential applications in various fields such as insurance, traffic and relationship marketing. The discrete open censored δ-shock model was presented. The lifetime behavior of the discrete open censored δ-shock model that shock interarrival times follow lattice distribution was studied. And the probability distribution and the expectation of the system lifetime were obtained for all the failure critical values. In particular, as a corollary, the lifetime distribution was obtained when the interarrival times follow a geometric distribution, i.e. the binomial process.

Key words: discrete, open censored, δ-shock model, lattice distribution

中图分类号: 

  • O213.2
[1] 李泽慧.与Poisson流有关的几个概率分布及其在城市交通拥挤问题中的应用[J]. 兰州大学学报:自然科学版,1984,S1:127-136. LI Zehui. Some distributions related to Poisson processes and their application in solving the problem of traffic jam[J]. Journal of Lanzhou University: Natural Sciences, 1984, S1:127-136.
[2] 李泽慧,黄宝胜,王冠军.一种冲击源下冲击模型的寿命分布及其性质[J]. 兰州大学学报:自然科学版,1999,35(4):1-7. LI Zehui, HUANG Baosheng, WANG Guanjun. Life distribution and its properties of shock models under random shocks[J]. Journal of Lanzhou University: Natural Sciences, 1999, 35(4):1-7.
[3] 李泽慧,白建明,孔新兵.冲击模型的研究进展[J]. 质量与可靠性,2005(3):31-36. LI Zehui, BAI Jianming, KONG Xinbing, et al. Progress of research on shock models[J]. Quality and Reliability, 2005(3):31-36.
[4] 李泽慧,白建明,孔新兵.冲击模型:进展与应用[J]. 数学进展,2007,36(4):385-397. LI Zehui, BAI Jianming, KONG Xingbing. Shock models: advances and applications[J]. Advances in Mathematics China, 2007, 36(4):385-397.
[5] 梁小林, 李泽慧.对偶δ-冲击模型的最优更换策略[C]//中国现场统计研究会第12届学术年会论文集.北京:[s.n.], 2005:211-214. LIANG Xiaolin, LI Zehui. Optimal replacement policy of antithetic δ shock model[C]//Proceedings of the 12th Symposium of Chinese Field Statistical Research. Beijing:[s.n.], 2005:211-214.
[6] TANG Yayong, LAM Yeh. A δ-shock maintenance model for a deteriorating system[J]. European Journal of Operational Research, 2006, 168(2):541-556.
[7] BAI Jianming, LI Zehui, KONG Xingbing. Generalized shock models based on a cluster point process[J]. IEEE Transactions on Reliability, 2006, 55(3):542-550.
[8] 唐亚勇,林埜.退化系统的对数正态δ冲击维修模型(英文)[J]. 四川大学学报:自然科学版,2006,43(1):59-65. TANG Yayong, Lam Yeh. A lognormal δ shock maintenance model for a deteriorating system (in English)[J]. Journal of Sichuan University: Natural Science Edition, 2006, 43(1):59-65.
[9] LI Zehui, KONG Xingbing. Life behavior of δ-shock model[J]. Statistics & Probability Letters, 2007, 77(6):577-587.
[10] LI Zehui, ZHAO Peng. Reliability analysis on the δ-shock model of complex systems[J]. IEEE Transactions on Reliability, 2007, 56(2):340-348.
[11] 梁小林,李泽慧.可修系统的最优更换策略[J]. 湖南师范大学自然科学学报,2007,30(4):15-18. LIANG Xiaolin, LI Zehui. Optimal replacement policies for repairable system[J]. Journal of Natural Science of Hunan Normal University, 2007, 30(4):15-18.
[12] 唐风琴,李泽慧.时倚泊松过程下的对偶δ-冲击模型[J]. 兰州大学学报:自然科学版,2007,43(4):1-4. TANG Fengqin, LI Zehui. Dual δ-shock models under time-dependent Poisson process[J]. Journal of Lanzhou University:Natural Sciences, 2007, 43(4):1-4.
[13] 李泽慧,刘志,牛一.一般δ-冲击模型中无失效数据的Bayes统计推断[J]. 应用概率统计,2007,23(1):51-58. LI Zehui, LIU Zhi, NIU Yi. Bayes statistical inference on general δ-shock model with zero failure data[J]. Chinese Journal of Applied Probability, 2007, 23(1):51-58.
[14] 梁小林,李泽慧.遭受外部冲击的检测模型[J]. 湖南大学学报:自然自科版,2008, 35(2):66-69. LIANG Xiaolin, LI Zehui. Random inspection model subject to external shocks[J]. Journal of Hunan University: Natural Sciences, 2008, 35(2):66-69.
[15] 马明.δ冲击模型寿命分布的积分计算及M函数的性质[J]. 山东大学学报:理学版,2008,43(12):15-19. MA Ming. Computation of the integral of lifetime distribution in δ-shock model and properties of M function[J]. Journal of Shandong University: Naturnal Science, 2008, 43(12):15-19.
[16] 马明.自激滤过的泊松过程[J]. 吉林大学学报:自然科学版,2009,47(4):711-715. MA Ming. Self-exciting filtered Poisson process[J]. Journal of Jilin University: Science Edition, 2009, 47(4):711-715.
[17] 魏艳华,王丙参. δ冲击模型及随机检测[J]. 北京联合大学学报:自然科学版,2011,25(1):89-92. WEI Yanhua, WANG Bingcan. δ shock model and random inspection[J]. Journal of Beijing Union University: Natural Sciences, 2011, 25(1):89-92.
[18] Serkan Eryilmaz. On the lifetime behavior of discrete time shock model[J]. Journal of Computational and Applied Mathematics, 2013, 237(1):384-388.
[19] 冶建华,马明,赵芬芬,等,离散δ冲击模型的寿命性质[J]. 西北民族大学学报:自然科学版,2012,33(3):1-4. YE Jianhua, MA Ming, ZHAO Fenfen, et al. Lifetime properties of discrete δ shock model[J]. Journal of Northwest University for Nationalities: Natural Science, 2012, 33(3):1-4.
[20] 何雪,冶建华,陈丽雅.冲击间隔服从泊松分布的离散δ冲击模型的可靠性分析[J]. 贵州师范大学学报:自然科学版,2012,30(6):65-68. HE Xue, YE Jianhua, CHEN Liya. The reliability analysis of the δ shock model based on interarrival time follows Poisson distribution[J]. Journal of Guizhou Normal University: Natural Sciences, 2012, 30(6):65-68.
[21] 张攀,马明,余进玉,等.时间点服从0-1分布的离散截断δ冲击模型的寿命性质[J]. 甘肃联合大学学报:自然科学版,2012,26(5):24-26. ZHANG Pan, MA Ming, YU Jinyu, et al. Lifetime behavior of discrete censored δ shock model on arrival times obey the 0-1 distribution[J]. Journal of Gansu Lianhe University: Natural Sciences, 2012, 26(5):24-26.
[22] 卢开澄,卢华明.组合数学[M]. 3版.北京:清华大学出版社,2002. LU Kaicheng, LU Huaming. Combinatorial mathematics[M]. 3rd ed. Beijing: Tsinghua University Press, 2002.
[1] 孔亮, 曹怀信. ε-近似保平方等腰正交映射的刻画与扰动[J]. 山东大学学报(理学版), 2015, 50(06): 75-82.
[2] 王尧, 张玖琳, 任艳丽. 幂零p.p.-环和幂零Baer环的Ore扩张[J]. 山东大学学报(理学版), 2015, 50(04): 76-81.
[3] 郑莹,马明*. 自激滤过的泊松过程的二阶矩[J]. J4, 2013, 48(09): 35-39.
[4] 李玲1,成国庆1,唐应辉2. 带预防性维修的冲击模型最优检测更换策略[J]. J4, 2011, 46(9): 122-126.
[5] 张琼,吴洪博*. BLΔ*系统中理论的Δ-根及广义Δ-MP问题[J]. J4, 2010, 45(4): 60-65.
[6] 赵书改1,曹怀信2*. 高维小波展开式的一致收敛性[J]. J4, 2010, 45(10): 89-92.
[7] 马明. δ冲击模型寿命分布的积分计算及M函数的性质[J]. J4, 2008, 43(12): 15-19.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!