山东大学学报(理学版) ›› 2015, Vol. 50 ›› Issue (06): 75-82.doi: 10.6040/j.issn.1671-9352.0.2014.571
孔亮1, 曹怀信2
KONG Liang1, CAO Huai-xin2
摘要: 在实赋范线性空间中, 给出了ε-近似保平方等腰正交映射的定义, 得到了ε-近似保平方等腰正交线性映射的一些充分条件, 在映射有界的条件下, 给出了ε-近似保平方等腰正交线性映射的刻画, 最后得到了ε-近似保平方等腰正交线性映射的扰动定理。
中图分类号:
[1] ROBERTS B D. On the geometry of abstract vector space[J]. Thoku Math J, 1934, 39:42-59. [2] BIRKHOFF G. Orthogonality in linear metric space[J]. Duke Math J, 1935, 1(2):169-172. [3] JAMES R C. Orthogonality in normed linear space[J]. Duke Math J, 1945, 12(2):291-302. [4] FATHI B S. An extension of the notion of orthogonality to Banach spaces[J]. J Math Anal Appl, 2002, 267(1):29-47. [5] 付向红, 黎永锦. Banach空间的非常B-正交性[J]. 中山大学学报:自然科学版, 2008, 47(1):116-117. FU Xianghong, LI Yongjin. The very B-orthogonality in Banach space[J]. Acta Scientiarum Naturalium Universitatis Sunyatseni, 2008, 47(1):116-117. [6] 杨冲, 张登华. Banach空间中Birkhoff正交性的刻画[J]. 数学的实践与认识, 2008, 38(9):187-192. YANG Chong, ZHANG Denghua. Characterizations of Birkhoff orthogonality in Banach space[J]. Journal of Mathematics in Practice and Theory, 2008, 38(9):187-192. [7] DING G G. Isometric and almost isometric operator[J]. Acta Math Sci, 1984, 4(2):221-226. [8] CHMIELI?SKI J. Linear mappings approximately preserving orthogonality[J]. J Math Anal Appl, 2005, 304(1):158-169. [9] CHMIELI?SKI J. Stability of the orthogonality preserving property in finite-dimensional inner product spaces[J]. J Math Anal Appl, 2006, 318(2):433-443. [10] BLANCO A, TURNŠEK A. On maps that preserve orthogonality in normed spaces[J]. Trans Proc Roy Soc Edinburgh: Sect A, 2006, 136(4):709-716. [11] TURNŠEK A. On mappings approximately preserving orthogonality[J]. J Math Anal Appl, 2007, 336(1):625-631. [12] CHMIELI?SKI J. Remarks on orthogonality preserving mappings in normed spaces and some stability problems[J]. Banach J Math Anal, 2007, 1(1):117-124. [13] 孔亮, 曹怀信. 保正交映射与正交性方程的稳定性[J]. 陕西师范大学学报:自然科学版, 2008, 36(5):10-14. KONG Liang, CAO Huaixin. Stability of orthogonality preserving mappings and the orthogonality equaion[J]. Journal of Shaanxi Normal University: Natural Science Editon, 2008, 36(5):10-14. [14] ILIŠEVIX D, TURNŠEK A. Approximately orthogonality preserving mappings on C*-modules[J]. J Math Anal Appl, 2008, 341(1):298-308. [15] 孔亮, 曹怀信. ε-近似保正交映射的稳定性与扰动[J]. 数学学报:中文版, 2010, 53(1):61-66. KONG Liang, CAO Huaixin. ε-Approximate orthogonality preserving mappings[J]. Acta Mathematica Sinica: Chinese Series, 2010, 53(1):61-66. [16] CHMIELI?SKI J, WÓJCIK P. Isosceles-orthogonality preserving property and its stability[J]. Nonlinear Anal, 2010, 72(3):1445-1453. [17] 崔建莲, 候晋川. C*代数上保持不定正交性的线性映射[J]. 数学年刊, 2004, 25A(4):437-443. CUI Jianlian, HOU Jinchuan. Linear maps preserving indefinite orthogonality on C*-algebras[J]. Chinese Annal of Mathematics, 2004, 25A(4):437-443. [18] 张芳娟, 吉国兴. B(H)上保正交性的可加映射[J]. 陕西师范大学学报:自然科学版, 2005, 33(4):21-25. ZHANG Fangjuan, JI Guoxing. Additive maps preserving orthogonality on B(H)[J]. Journal of Shaanxi Normal University:Natural Science Editon, 2005, 33(4):21-25. [19] WÓJIK P. Linear mappings preserving ρ-orthogonality[J]. J Math Anal Appl, 2012, 386(1):171-176. [20] BURGOS M. Orthogonality preserving linear maps on C*-algebras with non-zero socles[J]. J Math Anal Appl, 2013, 401(2):479-487. |
[1] | 王尧, 张玖琳, 任艳丽. 幂零p.p.-环和幂零Baer环的Ore扩张[J]. 山东大学学报(理学版), 2015, 50(04): 76-81. |
|