您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

山东大学学报(理学版) ›› 2015, Vol. 50 ›› Issue (06): 83-88.doi: 10.6040/j.issn.1671-9352.0.2015.083

• 论文 • 上一篇    下一篇

CDC-代数上的广义Jordan中心化子

马飞1, 张建华2, 贺雯1   

  1. 1. 咸阳师范学院数学与信息科学学院, 陕西 咸阳 712000;
    2. 陕西师范大学数学与信息科学学院, 陕西 西安 710062
  • 收稿日期:2015-02-27 修回日期:2015-05-20 出版日期:2015-06-20 发布日期:2015-07-31
  • 作者简介:马飞(1981-),男,博士,讲师,研究方向为算子代数与算子理论.E-mail:mafei6337@sina.com
  • 基金资助:
    国家自然科学基金项目资助项目(11471199);高等学校博士学科点专项科研基金(20110202110002);陕西省教育厅研究计划资助项目(2010JK890);咸阳师范学院专项科研基金项目(14XSYK003)

Generalized Jordan centralizers on CDC-algebras

MA Fei1, ZHANG Jian-hua2, HE Wen1   

  1. 1. College of Mathematics and Information Science, Xianyang Normal University, Xianyang 712000, Shaanxi, China;
    2. College of Mathematics and Information Science, Shaanxi Normal University, Xi'an 710062, Shaanxi, China
  • Received:2015-02-27 Revised:2015-05-20 Online:2015-06-20 Published:2015-07-31

摘要: Alg(L)是Hilbert空间H上的一个CDC-代数, φ: AlgLAlgL是一可加映射。本文证明了如果存在正整数m,n,r≥1, 满足对于任意的AAlgL,有 (m+n)φ(Ar+1)=mφ(A)Ar+nArφ(A), 则存在AlgL的中心中的元素 λZ(AlgL), 使得对于任意的AAlgL, 有 φ(A)=λA

关键词: CDC-代数, 中心化子, 可加映射

Abstract: Let Alg(L) be a CDC-algebra on a Hilbert space H, and φ: AlgLAlgL be an additive mapping. We prove that if for some positive integer numbers m,n,r≥1, (m+n)φ(Ar+1)=mφ(A)Ar+nArφ(A) hold for all AA, then there exists some λZ(AlgL ), such that φ(A)=λA, for all A∈AlgL.

Key words: centralizers, CDC-algebras, additive map

中图分类号: 

  • O177.2
[1] BREŠAR M. Centralizing mappings on von Neumann algebras[J]. Proc Amer Math Soc, 1991, 3:501-510.
[2] VUKMAN J, KOSI-ULBL I. On centralizers of semiprime rings[J]. Aequationes Math, 2003, 66:277-283.
[3] ZALAR B. On centralizers of semiprime rings[J]. Comment Math Univ Carolin, 1991, 32:609-614.
[4] BENKOVI? D, EREMITA D. Characterizing left centralizers by their action on a polynomial[J]. Publ Math Debrecen, 2004, 64(3): 343-351.
[5] VUKMAN J, KOSI-ULBL I. Centralizers rings and algebras[J]. Bull Austral Math Soc, 2005, 71:225-234.
[6] 齐宵霏, 杜栓平, 侯晋川. 中心化子的刻画[J]. 数学学报:中文版, 2008, 51(3): 509-516. QI Xiaofei, DU Shuanping, HOU Jinchuan. Characterization of centralizers[J]. Acta Mathematica Sinica: Chinese Series, 2008, 51(3):509-516.
[7] 杨翠,张建华. 套代数上的广义Jordan 中心化子[J]. 数学学报:中文版, 2010, 53(5): 975-980. YANG Cui, ZHANG Jianhua. Generalized Jordan centralizers on nest algebras[J]. Acta Mathematica Sinica: Chinese Series, 2010, 53(5):975-980.
[8] YU Dapeng, LU Heng, SHI Wujie, et al. On the locally nilpotent p-group with some special finite centralizer subgroups[J]. Advances in Mathematics, 2014, 43(1):7-11.
[9] ALI S, FONER A. On generalized (m, n)-derivations and generalized (m, n)-Jordan derivations in rings[J]. Chinese Academy of Sciences, 2014, 21(3):411-420.
[10] 马飞, 张建华. 标准算子代数上中心化子的刻画[J]. 山东大学学报:理学版, 2014, 48(9):64-68. MA Fei, ZHANG Jianhua. Characterization of centralizers on standard operator algebras[J]. Journal of Shandong University: Natural Science, 2014, 48(9): 64-68.
[11] WEI QIAN, Li Pengtong. Centralizers of J-subspace lattice algebras[J]. Linear Algebra Appl, 2007, 426:228-237.
[12] 李倩, 李鹏同. 完全分配 CSL代数上的中心化子[J]. 数学年刊, 2011, 32A(3): 375-384. LI Qian, LI Pengtong. Centralizers of completely distributive CSL algebras[J]. Chinese Annal of Mathematics, 2011, 32A(3):375-384.
[13] LAURIE C, LONGSTAFF W. A note on rank-one operators in reflexive algebras[J]. Proc Amer Math Soc, 1983, 89(2):293-297.
[14] LU Fangyan. Derivations of CDC algebras[J]. J Math Anal Appl, 2006, 323(1): 179-189.
[15] LU Fangyan. Lie derivations of certain CSL algebras[J]. Israel J Math, 2006, 155:149-156.
[16] QI Xiaofei. Characterization of centralizers and generalized derivations on J-subspace ltttice algebras[J]. Acta Math Scientia, 2014, 34A(2):463-472.
[17] GILFEATHER F, MOORE R. Isomorphisms of certain CSL algebras[J]. J Funct Anal, 1986, 67:264-291.
[1] 付丽娜,张建华. B(X)上Lie中心化子的刻画[J]. 山东大学学报(理学版), 2016, 51(8): 10-14.
[2] 杨源, 张建华. B(H)上中心化子的一个局部特征[J]. 山东大学学报(理学版), 2015, 50(12): 1-4.
[3] 张芳娟. 广义矩阵代数上的非线性Lie中心化子[J]. 山东大学学报(理学版), 2015, 50(12): 10-14.
[4] 孟娇, 吉国兴. 标准算子代数上保因子的可加映射[J]. 山东大学学报(理学版), 2015, 50(08): 20-23.
[5] 李荣, 吉国兴*. 保持算子值域或核包含关系的可加映射[J]. 山东大学学报(理学版), 2014, 49(2): 42-45.
[6] 马飞1,2,张建华1. 标准算子代数上中心化子的刻画[J]. J4, 2013, 48(09): 64-67.
[7] 肖丙峰, 姚炳学. (λ,μ)-反模糊正规子群[J]. J4, 2011, 46(12): 120-123.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!