您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

山东大学学报(理学版) ›› 2015, Vol. 50 ›› Issue (12): 85-92.doi: 10.6040/j.issn.1671-9352.0.2014.537

• 论文 • 上一篇    下一篇

n阶三角矩阵环上的 Gorenstein 投射模与维数

朱荣民, 王占平   

  1. 西北师范大学数学与统计学院, 甘肃 兰州 730070
  • 收稿日期:2014-11-28 修回日期:2015-09-06 出版日期:2015-12-20 发布日期:2015-12-23
  • 作者简介:朱荣民(1991-),男,硕士研究生,研究方向为同调代数.E-mail:zhurm1991@163.com
  • 基金资助:
    国家自然科学基金资助项目(11261050,11201377)

Gorenstein projective modules and dimensions over triangular matrix ring of order n

ZHU Rong-min, WANG Zhan-ping   

  1. Department of Mathematics, Northwest Normal University, Lanzhou 730070, Gansu, China
  • Received:2014-11-28 Revised:2015-09-06 Online:2015-12-20 Published:2015-12-23

摘要: 研究了在什么条件下n阶三角矩阵环T是左Gorenstein环, 左T-模是Gorenstein投射模, 并刻画了左T-模的Gorenstein投射维数。

关键词: 左 Gorenstein 环, 三角矩阵环, Gorenstein 投射维数

Abstract: It is investigated that when the triangular matrix ring T of order n is left Gorenstein, and when a left T-module is Gorenstein projective, and Gorenstein projective dimensions of left T-modules are characterized.

Key words: triangular matrix ring, left Gorenstein ring, Gorenstein projective dimension

中图分类号: 

  • O153.3
[1] HAGHANY A, VARADARAJAN K. Study of formal triangular matrix rings[J]. Communications in Algebra, 1999, 11:5507-5525.
[2] HAGHANY A, VARADARAJAN K. Study of modules over formal triangular matrix rings[J]. Journal of pure and Applied Algebra, 2000, 147:41-58.
[3] GREEN E L. On the representation theory of rings in matrix form[J]. Pacific Journal of Mathematics, 1982, 100:123-138.
[4] CHEN Xiaowu. Singularity categories, Schur functors and triangular matrix rings[J]. Algebras and Representation Theory, 2009, 12(2-5):181-191.
[5] XIONG Baolin, ZHANG Pu. Gorenstein-projective modules over triangular matrix Artin algebras[J]. Journal of Algebra and Its Applications, 2012, 11(04).
[6] ZHANG Pu. Gorenstein-projective modules and symmetric recollements[J]. Journal of Algebra, 2013, 388:65-80.
[7] ENOCHS E E, CORTÉS-IZURDIAGA M, TORRECILLAS B. Gorenstein conditions over triangular matrix rings[J]. Journal of pure and Applied Algebra, 2014, 218:1544-1554.
[8] BELIGIANNIS A. The homological theory of contravariantly finite subcategories:Auslander-Buchweitz contexts, Gorenstein categories and (co-) stabilization[J]. Communications in Algebra, 2000, 28(10):4547-4596.
[9] ENOCHS E E. JENDA O M G. Relative homological algebra[M]. Berlin-New York: Walter de Gruyter, 2000.
[10] ENOCHS E E, TORRECILLAS B. Flat covers over formal triangular matrix rings and minimal Quillen factorizations[J]. Forum Mathematicum, 2011, 23:611-624.
[11] ASADOLLAHI J, SALARIAN S. On the vanishing of Ext over formal triangular matrix rings[J]. Forum Mathematicum, 2006, 18:951-966.
[12] HOLM H, Gorenstein homological dimensions [J]. Journal of pure and Applied Algebra, 2004, 189:167-193.
[1] 黄述亮. 形式三角矩阵环上导子的几个结果[J]. 山东大学学报(理学版), 2015, 50(10): 43-46.
[2] 王文康. 中心线性 McCoy 环[J]. J4, 2013, 48(12): 6-13.
[3] 王文康. 关于弱斜Armendariz环[J]. J4, 2010, 45(10): 15-19.
[4] 王文康 . 一类上三角矩阵环的Armendariz与半交换性质[J]. J4, 2008, 43(2): 62-65 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!