山东大学学报(理学版) ›› 2015, Vol. 50 ›› Issue (12): 58-64.doi: 10.6040/j.issn.1671-9352.1.2015.051
覃丽珍1, 李金海2, 王扬扬2
QIN Li-zhen1, LI Jin-hai2, WANG Yang-yang2
摘要: 形式概念分析是数据分析与知识发现的有效工具,现已被广泛应用于各个研究领域。决策形式背景是形式概念分析中的重要关系数据库之一,其主要研究内容是基于规则提取的知识发现。本文借助于Wille概念格和面向对象概念格对决策形式背景的规则提取问题进行研究,给出了规则提取算法,并通过高校就业数据对算法进行了实证分析。
中图分类号:
[1] WILLE R. Restructuring lattice theory: an approach based on hierarchies of concepts[C]. Ordered Sets, 1982: 445-470. [2] 张文修,仇国芳. 基于粗糙集的不确定性决策[M]. 北京:清华大学出版社,2005. ZHANG Wenxiu, QIU Guofang. Uncertain decision making based on rough sets[M]. Beijing: Tsinghua University Press, 2005. [3] 王志海,胡可云,胡学刚,等. 概念格上规则提取的一般算法与渐进式算法[J].计算机学报, 1999, 22(1):66-70. WANG Zhihai, HU Keyun, HU Xuegang, et al. General and incremental algorithms of rule extraction based on concept lattice[J]. Chinese Journal of Computers, 1999, 22(1):66-70. [4] 谢志鹏,刘宗田. 概念格的快速渐进式构造算法[J].计算机学报, 2002, 25(5):490-495. XIE Zhipeng, LIU Zongtian. A fast incremental algorithm for building concept lattice[J]. Chinese Journal of Computers, 2002, 25(5):490-495. [5] 梁吉业,王俊红.基于概念格的规则产生集挖掘算法[J].计算机研究与发展, 2004, 41(8):1339-1344. LIANG Jiye, WANG Junhong. An algorithm for extracting rule-generating sets based on concept lattice[J]. Journal of Computers Research & Development, 2004, 41(8):1339-1344. [6] 张文修,魏玲,祁建军. 概念格的属性约简理论与方法[J]. 中国科学:F辑 信息科学, 2005, 35(6):628-639. ZHANG Wenxiu, WEI Ling, QI Jianjun. Attribute reduction theory and approach to concept lattice[J]. Science in China: Series F Information Sciences, 2005, 35(6):628-639. [7] 张继福,蒋义勇,胡立华,等. 基于概念格的天体光谱离群数据识别方法[J]. 自动化学报, 2008, 34(9):1060-1066. ZHANG Jifu, JIANG Yiyong, HU Lihua, et al. A concept lattice based recognition method of celestial spectra outliers[J]. Acta Automatica Sinica, 2008, 34(9):1060-1066. [8] 智慧来,智东杰,刘宗田.概念格合并原理与算法[J].电子学报, 2010, 38(2):455-459. ZHI Huilai, ZHI Dongjie, LIU Zongtian. Theory and algorithm of concept lattice union[J]. Chinese Journal of Electronics, 2010, 38(2):455-459. [9] WU Weizhi, LEUNG Yee, MI Jusheng. Granular computing and knowledge reduction in formal contexts[J]. IEEE Transactions on Knowledge and Data Engineering, 2009, 21(10):1461-1474. [10] LI Jinhai, MEI Changlin, XU Weihua, et al. Concept learning via granular computing: A cognitive viewpoint[J]. Information Sciences, 2015, 298:447-467. [11] 魏玲,祁建军,张文修. 决策形式背景的概念格属性约简[J]. 中国科学: F辑 信息科学,2008,38(2):195-208. WEI Ling, QI Jianjun, ZHANG Wenxiu. Attribute reduction theory of concept lattice based on decision formal contexts[J]. Science in China: Series F Information Sciences, 2008, 38(2):195-208. [12] SHAO Mingwen, LEUNG Yee, WU Weizhi. Rule acquisition and complexity reduction in formal decision contexts[J]. International Journal of Approximate Reasoning, 2014, 55(1):259-274. [13] LI Jinhai, MEI Changlin, LV Yuejin. Knowledge reduction in formal decision contexts based on an order-preserving mapping[J]. International Journal of General Systems, 2012, 41(2):143-161. [14] LI Jinhai, MEI Changlin, LV Yuejin. Knowledge reduction in decision formal contexts[J]. Knowledge-Based Systems, 2011, 24(5):709-715. [15] LI Jinhai, MEI Changlin, LV Yuejin. A heuristic knowledge-reduction method for decision formal contexts[J]. Computers and Mathematics with Applications, 2011, 61(4):1096-1106. [16] LI Jinhai, MEI Changlin, CHERUKURI A K, et al. On rule acquisition in decision formal contexts[J]. International Journal of Machine Learning and Cybernetics, 2013, 4(6):721-731. [17] LI Jinhai, MEI Changlin, WANG Junhong, et al. Rule-preserved object compression in formal decision contexts using concept lattices[J]. Knowledge-Based Systems, 2014, 71(11):435-445. [18] REN Yue, LI Jinhai, CHERUKURI A K, et al. Rule acquisition in formal decision contexts based on formal, object-oriented and property-oriented concept lattices[J]. The Scientific World Journal, 2014(2014):1-10. [19] 覃丽珍,姚炳学,李金海. 不协调覆盖决策系统的完备属性约简算法[J]. 模糊系统与数学,2013, 27(5):158-166. QIN Lizhen, YAO Bingxue, LI Jinhai. A complete attribute reduction algorithm for inconsistent covering decision systems[J]. Fuzzy Systems and Mathematics, 2013, 27(5):158-166. [20] 麦晓冬,贾萍,翁建荣,等. 基于多尺度粗糙集模型的决策树在高校就业数据分析中的应用[J]. 华南师范大学学报:自然科学版,2014, 46(4):31-36. MAI Xiaodong, JIA Ping, WENG Jianrong, et al. Analysis of employment data in universities using multi-scale rough set model decision trees[J]. Journal of South China Normal University:Natural Science Edition, 2014, 46(4):31-36. [21] YAO Yiyu. Concept lattices in rough set theory[C]// Proceedings of 23rd International Meeting of the North American Fuzzy Information Processing Society, IEEE Xplore, 2004: 796-801. |
[1] | 张恩胜. 区间集概念格属性约简的组成与结构[J]. 山东大学学报(理学版), 2018, 53(8): 17-24. |
[2] | 任睿思,魏玲,祁建军. 三支弱协调决策形式背景的规则获取[J]. 山东大学学报(理学版), 2018, 53(6): 76-85. |
[3] | 李金海,吴伟志. 形式概念分析的粒计算方法及其研究展望[J]. 山东大学学报(理学版), 2017, 52(7): 1-12. |
[4] | 黄桃林,牛娇娇,李金海. 基于粒辨识属性矩阵的动态形式背景约简更新方法[J]. 山东大学学报(理学版), 2017, 52(7): 13-21. |
[5] | 刘琳,魏玲,钱婷. 决策形式背景中具有置信度的三支规则提取[J]. 山东大学学报(理学版), 2017, 52(2): 101-110. |
[6] | 陈雪,魏玲,钱婷. 基于AE-概念格的决策形式背景属性约简[J]. 山东大学学报(理学版), 2017, 52(12): 95-103. |
[7] | 焦潞林, 彭岩, 林云. 面向网络舆情的文本知识发现算法对比研究[J]. 山东大学学报(理学版), 2014, 49(09): 62-68. |
[8] | 张春英, 王立亚, 刘保相. 基于覆盖的区间概念格动态压缩原理与实现[J]. 山东大学学报(理学版), 2014, 49(08): 15-21. |
[9] | 张清华1,2,幸禹可2,王国胤2. 概念知识粒与概念信息粒的相互转化[J]. J4, 2010, 45(9): 1-6. |
[10] | 王彬弟,魏玲. 基于关联格的概念格约简理论[J]. J4, 2010, 45(9): 20-26. |
[11] | 张春英,薛佩军,刘保相 . CS(K)上的S-粗集特征[J]. J4, 2006, 41(2): 18-23 . |
|