您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

山东大学学报(理学版) ›› 2017, Vol. 52 ›› Issue (5): 18-24.doi: 10.6040/j.issn.1671-9352.0.2016.577

• • 上一篇    下一篇

负载型钌基纳米结构用于挥发性有机化合物催化氧化的研究

潘金鼎1, 2,李佳琪1, 2,冯艳1,2,陈运法1,杨军1*   

  1. 1.中国科学院过程工程研究所多相复杂系统国家重点实验室, 北京 100190;2.中国科学院大学, 北京 100049
  • 收稿日期:2016-12-09 出版日期:2017-05-20 发布日期:2017-05-15
  • 通讯作者: 杨军(1972— ),男,博士,研究员,研究方向为金属、半导体及复合纳米材料、燃料电池、光催化、水处理和环境净化及分离技术. ;E-mail:jyang@ipe.ac.cn E-mail:jdpan@ipe.ac.cn
  • 作者简介:潘金鼎(1987— ),男,硕士研究生,研究方向为贵金属纳米材料的制备及其在有机挥发物催化氧化中的应用. E-mail:jdpan@ipe.ac.cn
  • 基金资助:
    国家自然科学基金资助项目(21376247,21573240);国家高技术研究发展计划(863计划)资助项目(2012AA062702);中国科学院先导专项资助项目(XDB05050300);中国科学院知识创新工程资助项目(KZCX2-EW-403)

Supported ruthenium-based nanostructures toward catalytic oxidation of volatile organic compounds

PANG Jin-ding1,2, LI Jia-qi1,2, FENG Yan1,2, CHEN Yun-fa1, YANG Jun1*   

  1. (1. State Key Laboratory of Multi-Phase Complex System, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China;
    2. University of Chinese Academy of Sciences, Beijing 100049, China
  • Received:2016-12-09 Online:2017-05-20 Published:2017-05-15

摘要: 基于种子生长法并施加适当的后续处理,制备了负载于CeO2和γ-Al2O3载体表面的核壳结构Ag-Ru和中空Ru纳米颗粒。对苯催化氧化活性测试表明,核壳结构Ag-Ru纳米颗粒比中空Ru纳米颗粒具有更好的催化活性,其中负载于CeO2表面的核壳结构Ag-Ru纳米颗粒的T20T90可分别低至153.8 ℃和170.4 ℃。XPS和H2-TPR分析均表明在核壳结构Ag-Ru纳米颗粒中,内核Ag的存在可增加壳层组分中金属态Ru的含量,并且可抑制颗粒与载体间的相互作用,可能是导致核壳结构纳米颗粒具有较好苯催化氧化活性的原因。

关键词: 钌纳米颗粒, 核壳结构, 中空结构, 苯, 催化氧化, 种子生长法

Abstract: CeO2 and γ-Al2O3-supported core-shell Ag-Ru and hollow Ru nanoparticles are prepared by a seed-mediated growth method and an appropriate post-treatment. The catalytic tests of benzene oxidation show that the core-shell Ag-Ru nanoparticles have better activities than those of hollow Ru nanostructures. In specific, the core-shell Ag-Ru nanoparticles supported on CeO2 substrates have T20 and T90 as low as 153.8 ℃ and 170.4 ℃, respectively. The XPS and H2-TPR analyses confirm that the core-shell Ag-Ru nanoparticles have more metallic Ru component in their particle surface, which may account for the high performance for oxidation of benzene.

Key words: Ru nanoparticles, benzene, catalytic oxidation, core-shell, seed-mediated growth, hollow

中图分类号: 

  • TQ426.6
[1] LIOTTA L F. Catalytic oxidation of volatile organic compounds on supported noble metals[J]. Applied Catalysis B-Environmental, 2010, 100(3/4):403-412.
[2] HUANG H, XU Y, FENG Q, et al. Low temperature catalytic oxidation of volatile organic compounds:A review[J]. Catalysis Science & Technology, 2015, 5(5):2649-2669.
[3] HE Z, LI G, CHEN J, et al. Pollution characteristics and health risk assessment of volatile organic compounds emitted from different plastic solid waste recycling workshops[J]. Environment International, 2015, 77:85-94.
[4] VILLANUEVA F, TAPIA A, AMO-SALAS M, et al. Levels and sources of volatile organic compounds including carbonyls in indoor air of homes of Puertollano, the most industrialized city in central Iberian Peninsula. Estimation of health risk[J]. International Journal of Hygiene and Environmental Health, 2015, 218(6):522-534.
[5] ZHANG Z, WANG X, ZHANG Y, et al. Ambient air benzene at background sites in Chinas most developed coastal regions: Exposure levels, source implications and health risks[J]. Science of Total Environment, 2015, 511:792-800.
[6] TANG X, BAI Y, DUONG A, et al. Formaldehyde in China: Production, consumption, exposure levels, and health effects[J]. Environment International, 2009, 35(8):1210-1224.
[7] LI W B, WANG J X, GONG H. Catalytic combustion of VOCs on non-noble metal catalysts[J]. Catalysis Today, 2009, 148(1-2):81-87.
[8] 李东艳,刘海弟,陈运法. 氧化锰八面体分子筛的合成及其对苯催化氧化性能[J]. 环境科学,2011,32(12):3657-3661. LI Dongyan, LIU Haidi, CHEN Yunfa. Synthesis of manganese oxide octahedral molecular sieve and their application in catalytic oxidation of benzene[J]. Environmental Science, 2011, 32(12):3657-3661.
[9] 徐秋建,王者,莫金汉,等. 热催化蜂窝降解室内VOCs实验研究[J]. 工程热物理学报,2011,32(8):1406-1408. XU Qiujian, WANG Zhe, MO Jinhan, et al. Experimental study on the performance of indoor VOC removal by thermal catalytic honeycombs[J]. Journal of Engineering Thermophysics, 2011, 32(8):1406-1408.
[10] SCIRE S, LIOTTA L F. Supported gold catalysts for the total oxidation of volatile organic compounds[J]. Applied CatalysisB-Environmental, 2012, 125:222-246.
[11] 左树锋,周仁贤,齐陈泽. 粘土孔结构及添加铈对于催化剂上苯吸附-脱附-催化氧化性能的影响[J]. 中国稀土学报,2012,30(2):192-198. ZUO Shufeng, ZHOU Renxian, QI Chenze. Effects of clay pore structure and addition of cerium on adsorption/desorption and catalytic oxidation of benzene[J]. Journal of the Chinese Society of Rare Earths, 2012, 30(2):192-198.
[12] LIOTTA L F, WU H, PANTALEO G, et al. Co3O4 nanocrystals and Co3O4-MOx binary oxides for CO, CH4 and VOC oxidation at low temperatures:A review[J]. Catalysis Science & Technology, 2013, 3(12):3085-3102.
[13] 丁梦林,张思财,吕宁宁,等. Pt-Ce掺加对Cu/Al2O3催化剂结构及性能的影响及其用于苯催化氧化的研究[J]. 中国稀土学报,2013,31(3):289-295. DING Menglin, ZHANG Sicai, LÜ Ningning, et al. Influence of Pt-Ce on structure and performance of Cu/Al2O3 and its application in catalytic oxidation of benzene[J]. Journal of the Chinese Society of Rare Earths, 2013, 31(3):289-295.
[14] LI J, LIU H, DENG Y, et al. Emerging nanostructured materials for the catalytic removal of volatile organic compounds[J]. Nanotechnology Reviews, 2016, 5(1):147-181.
[15] SOLSONA B, PÉREZ-CABERO M, VÁZQUEZ I, et al. Total oxidation of VOCs on Au nanoparticles anchored on Co doped mesoporous UVM-7 silica[J]. Chemical Engineering Journal, 2012, 187:391-400.
[16] MA L, WANG D, LI J, et al. Ag/CeO2 nanospheres:Efficient catalysts for formaldehyde oxidation[J]. Applied Catalysis B-Environmental, 2014, 148:36-43.
[17] CHEN C, WANG X, ZHANG J, et al. Superior performance in catalytic combustion of toluene over KZSM-5 zeolite supported platinum catalyst[J]. Catalysis Letters, 2014, 144(11):1851-1859.
[18] TABAKOVA T, ILIEVA L, PETROVA P, et al. Complete benzene oxidation over mono and bimetallic Au-Pd catalysts supported on Fe-modified ceria[J]. Chemical Engineering Journal, 2015, 260:133-141.
[19] CHEN H, TANG M, RUI Z, et al. MnO2 promoted TiO2 nanotube array supported Pt catalyst for formaldehyde oxidation with enhanced efficiency[J]. Industrial & Engineering Chemistry Research, 2015, 54(36):8900-8907.
[20] HOSOKAWA S, FUJINAMI Y, KANAI H. Reactivity of Ru=O species in RuO2/CeO2 catalysts prepared by a wet reduction method[J]. Journal of Molecular Catalysis A:Chemical, 2005, 240(1):49-54.
[21] MIRANDA B, DÍAZ E, ORDÓNEZ S, et al. Catalytic combustion of trichloroethene over Ru/Al2O3: Reaction mechanism and kinetic study[J]. Catalysis Communications, 2006, 7(12):945-949.
[22] AOUAD S, SAAB E, AAD E A, et al. Reactivity of Ru-based catalysts in the oxidation of propene and carbon black[J]. Catalysis Today, 2007, 119(1):273-277.
[23] OKAL J, ZAWADZKI M. Catalytic combustion of butane on Ru/γ-Al2O3 catalysts[J]. Applied CatalysisB-Environmental, 2009, 89(1/2):22-32.
[24] MITSUI T, MATSUI T, KIKUCHI R, et al. Low-temperature complete oxidation of ethyl acetate over CeO2-supported precious metal catalysts[J]. Topics in Catalysis, 2009, 52(5):464-469.
[25] OKAL J, ZAWADZKI M. Influence of catalyst pretreatments on propane oxidation over Ru/γ-Al2O3[J]. Catalysis Letters, 2009, 132(1):225-234.
[26] OKAL J, ZAWADZKI M, TYLUS W. Microstructure characterization and propane oxidation over supported Ru nanoparticles synthesized by the microwave-polyol method[J]. Applied CatalysisB-Environmental, 2011, 101(3/4):548-559.
[27] OKAL J, ZAWADZKI M. Combustion of propane over novel zinc aluminate-supported ruthenium catalysts[J]. Applied CatalysisB-Environmental, 2011, 105(1/2):182-190.
[28] DAI Q, BAI S, WANG X, et al. Catalytic combustion of chlorobenzene over Ru-doped ceria catalysts:Mechanism study[J]. Applied Catalysis B-Environmental, 2013, 129:580-588.
[29] DAI Q, BAI S, WANG J, et al. The effect of TiO2 doping on catalytic performances of Ru/CeO2 catalysts during catalytic combustion of chlorobenzene[J]. Applied Catalysis B-Environmental, 2013, 142/143:222-233.
[30] HUANG H, DAI Q, WANG X. Morphology effect of Ru/CeO2 catalysts for the catalytic combustion ofchlorobenzene[J]. Applied Catalysis B-Environmental, 2014, 158-159:96-105.
[31] LIU X, ZENG J, WANG J, et al. Catalytic oxidation of toluene over a porous Co3O4-supported ruthenium catalyst[J]. RSC Advances, 2015, 5(64):52066-52071.
[32] LIU X, ZENG J, WANG J, et al. Catalytic oxidation of methyl bromide using ruthenium-based catalysts[J]. Catalysis Science & Technology, 2016, 6(12):4337-4344.
[33] WANG J, LIU X, ZENG J, et al. Catalytic oxidation of trichloroethylene over TiO2 supported ruthenium catalysts[J]. Catalysis Communications, 2016, 76:13-18.
[34] LIU H, QU J, CHEN Y, et al. Hollow and cage-bell structured nanomaterials of noble metals[J]. Journal of the American Chemical Society, 2012, 134(28):11602-11610.
[35] LI C, LIU H, YANG J. A facile hydrothermal approach to the synthesis of nanoscale rare earth hydroxides[J]. Nanoscale Research Letters, 2015, 10:144/1-144/6.
[36] LIU H, YE F, YANG J. A universal and cost-effective approach to the synthesis of carbon-supported noble metal nanoparticles with hollow interiors[J]. Industrial & Engineering Chemistry Research, 2014, 53(14):5925-5931.
[37] QIAN K, HUANG W. Au-Pd alloying-promoted thermal decomposition of PdO supported on SiO2 and its effect on the catalytic performance in CO oxidation[J]. Catalysis Today, 2011, 164(1):320-324.
[38] MA L, WANG D, LI J, et al. Ag/CeO2 nanospheres:Efficient catalysts for formaldehyde oxidation[J]. Applied Catalysis B-Environmental, 2014, 148:36-43.
[39] BAI B, LI J. Positive effects of K+ ions on three-dimensional mesoporous Ag/Co3O4 catalyst for HCHO oxidation[J]. ACS Catalysis, 2014, 4(8):2753-2762.
[1] 代洪秀,王南,艾克百江·艾麦尔,林猛. GO/PPy/Pb3O4修饰电极的制备及其在电化学传感中的应用[J]. 山东大学学报(理学版), 2017, 52(9): 98-102.
[2] 张耀军,万刚强,颜磊,马庆昌,李东祥,赵继宽. 种子生长法制备ZnO纳米棒组装结构[J]. 山东大学学报(理学版), 2016, 51(1): 14-19.
[3] 宋艳朵, 邵国俊, 王蕊, 茹淼焱. 导电聚酯片的制备及酸处理对导电层吸附量和黏附性的影响[J]. 山东大学学报(理学版), 2015, 50(01): 70-75.
[4] 申中兰1,袁东2,王茂森1, 脱英英3,张红霞1,盛建伟1,张卉1,祝建华1. 稳定性同位素稀释气相色谱-质谱法测定金枪鱼中多氯联苯的不确定度评定[J]. J4, 2013, 48(05): 34-38.
[5] 薛海全1,崔兆杰1*,杜世勇2. ASE萃取-GPC净化-GC/ECD测定小麦中有机氯农残和多氯联苯[J]. J4, 2011, 46(1): 11-15.
[6] 刘冰 陆玮洁 杨国生. 遗传算法在烷基硝基苯酚类化合物的QSRR中的应用[J]. J4, 2009, 44(9): 8-11.
[7] . 水相中粒径可控银纳米粒子的电化学制备[J]. J4, 2009, 44(7): 13-17.
[8] . 新型深海中温菌Wangia profunda(SMA87)胞外多糖对对硝基苯胺的吸附研究[J]. J4, 2009, 44(5): 33-39.
[9] 李 静,岳钦艳*,李 倩,高宝玉,原爱娟 . 阳离子聚合物/膨润土对苯酚的吸附及其机理研究[J]. J4, 2008, 43(9): 31-35 .
[10] 姚慧玲,石元昌,翟光耀,张晓燕 . 聚苯胺/聚(苯乙烯-苯乙烯磺酸钠) 纳米核-壳结构聚合物的微乳液法合成及性能表征[J]. J4, 2008, 43(3): 26-29 .
[11] 于 江,李 宁,吴 霞,高希宝 . 嗅蛋白对铕纳米颗粒荧光增强效应的研究[J]. J4, 2008, 43(1): 20-23 .
[12] 张树芹,侯万国,*,王文兴 . 对硝基苯酚在镁铝型双金属氢氧化物及其煅烧产物上的吸附[J]. J4, 2007, 42(9): 19-24 .
[13] 毕研俊,李玉江*,高宝玉,吴涛,王静 . 焙烧类水滑石吸附去除水中苯酚[J]. J4, 2007, 42(5): 59-63 .
[14] 崔兆杰,赵士燕 . 超临界CO2流体萃取——气相色谱法测定土壤中的类二癋英类多氯联苯[J]. J4, 2006, 41(6): 124-128 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!