您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

山东大学学报(理学版) ›› 2017, Vol. 52 ›› Issue (8): 43-47.doi: 10.6040/j.issn.1671-9352.0.2017.036

• • 上一篇    下一篇

关于Wigner-Yanase-Dyson斜信息的一些研究

王丽丽,陈峥立*   

  1. 陕西师范大学数学与信息科学学院, 陕西 西安 710062
  • 收稿日期:2017-02-05 出版日期:2017-08-20 发布日期:2017-08-03
  • 通讯作者: 陈峥立(1973— ), 男, 副教授, 博士, 研究方向为算子代数与量子计算. E-mail:czl@snnu.edu.cn E-mail:wanglilimath@163.com
  • 作者简介:王丽丽(1992— ), 女, 硕士研究生, 研究方向为算子代数与量子计算. E-mail:wanglilimath@163.com
  • 基金资助:
    国家自然科学基金资助项目(11571213,11371012)

Some research about Wigner-Yanase-Dyson skew information

WANG Li-li, CHEN Zheng-li*   

  1. School of Mathematics and Information Science, Shaanxi Normal University, Xian 710062, Shaanxi, China
  • Received:2017-02-05 Online:2017-08-20 Published:2017-08-03

摘要: 基于对Wigner-Yanase-Dyson斜信息和Wigner-Yanase关联的一些特性的研究, 给出了不同量子信道的Wigner-Yanase-Dyson斜信息。最后证明了Wigner-Yanase-Dyson斜信息的凹性。

关键词: Wigner-Yanase关联, 量子信道, Wigner-Yanase-Dyson斜信息, 密度算子

Abstract: Based on the study of some properties of the Wigner-Yanase-Dyson skew information and the Wigner-Yanase correlation, the Wigner-Yanase-Dyson skew information is given for different quantum channels. Finally, the concavity with the Wigner-Yanase-Dyson skew information is proven.

Key words: Wigner-Yanase correlation, Wigner-Yanase-Dyson skew information, density operator, quantum channel

中图分类号: 

  • O177.1
[1] WIGNER E P, YANASE M M. Information contents of distributions[J]. Proceedings of the National Academy of Sciences of the United States of America, 1963, 49(6):910-918.
[2] DOU Yanni, DU Hongke. Generalizations of the Heisenberg and Schrödinger uncertainty relations[J]. Journal of Mathematical Physics, 2013, 54, 103508. doi:10.1063/1.4825114.
[3] DOU Yanni, DU Hongke. Note on the Wigner-Yanase-Dyson skew information[J]. International Journal of Theoretical Physics, 2014, 53(3):952-958.
[4] YANAGI K. Uncertainty relation on Wigner-Yanase-Dyson skew information[J]. Journal of Mathematical Analysis and Applications, 2009, 365(1):12-18.
[5] YANAGI K. Wigner-Yanase-Dyson skew information and uncertainty relation[J]. Journal of Physics: Conference Series, 2010, 201(1), id: 012015.
[6] 李浩静, 陈峥立, 梁丽丽. 关于Schrödinger不确定性关系的研究[J]. 山东大学学报(理学版), 2014, 49(6):67-73. LI Haojing, CHEN Zhengli, LIANG Lili. Note on the Schrödinger uncertainty relation[J]. Journal of Shandong University(Natural Science), 2014, 49(6):67-73.
[7] CHEN Zhengli, LIANG Lili, LI Haojing, et al. A generalized uncertainty relation[J]. International Journal of Theoretical Physics, 2015, 54(8):2644-2651.
[8] CHEN Zhengli, LIANG Lili, LI Haojing, et al. Two generalized Wigner-Yanase skew information and their uncertainty relations[J]. Quantum Information Processing, 2016, 15(12):5107-5118.
[9] LUO Shunlong. Wigner-Yanase skew information vs. quantum fisher information[J]. Proceedings of the American Mathematical Society, 2003, 132(3):885-890.
[10] LUO Shunlong. Quantum discord for two-qubit systems[J]. Physical Review A, 2008, 77. doi: 10.1103/PhysRevA.77.042303.
[11] LUO Shunlong, FU Shuangshuang. Geometric measure of quantum discord[J]. Physics Review A, 2010, 82(3):118-129.
[12] LUO Shunlong, FU Shuangshuang. Quantifying correlations via the Wigner-Yanase skew information[J]. Physical Review A, 2012, 85. doi: 10.1103/PhysRevA.85.032117.
[13] LIEB E H. Convex trace functions and the Wigner-Yanase-Dyson conjecture[J]. Advances in Mathematics, 1973, 11(3):267-288.
[14] LUO Shunlong, ZHANG Zhengmin. An informational characterization of Schrödingers uncertainty relations[J]. Journal of Statistical Physics, 2004, 114(5):1557-1576.
[15] LI Qian, CAO Huaixin, DU Hongke. A generalization of Schrödingers uncertainty relation described by the Wigner-Yanase skew information[J]. Quantum Information Processing, 2015, 14(4):1513-1522.
[1] 王晓霞,曹怀信,查嫽. 量子信道对广义纠缠鲁棒性的影响[J]. 山东大学学报(理学版), 2016, 51(11): 127-134.
[2] 李浩静,陈峥立*,梁丽丽. 关于Schr-dinger不确定性关系的研究[J]. 山东大学学报(理学版), 2014, 49(06): 67-73.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!