山东大学学报(理学版) ›› 2018, Vol. 53 ›› Issue (2): 73-82.doi: 10.6040/j.issn.1671-9352.0.2017.313
王海伟,赵彬*
WANG Hai-wei, ZHAO Bin*
摘要: 引入了Q-并代数范畴中的K-flat投射对象的概念,并且给出了Q-并代数范畴中K-flat投射对象的等价刻画,证明了Q是Q-并代数范畴中的K-flat投射对象当且仅当Q有余代数结构。
中图分类号:
[1] BANASCHEWSKI B. Projective frames: a general view [J]. Cahiers de Topologie et Géométrie Différentielle Catégoriques, 2005, 46(4): 301-312. [2] PASEKA J. Projective quantales: a general view[J]. International Journal of Theoretical Physics, 2008, 47(1): 291-296. [3] RESENDE P. Tropological systems and observational logic in concurrency and specification[D]. Gompo Grande: Universidade Técnica de Lisboa, 1997. [4] PASEKA J. Projective sup-algebras: a general view[J]. Topology and its Applications, 2008, 155(4): 308-317. [5] ZHANG Xia, LAAN Valdis. Quotients and subalgebras of sup-algebras[J]. Proceedings of the Estonian Academy of Sciences, 2015, 64(3): 311-322. [6] BĚLOHLÁVEK R. Fuzzy relational systems: foundations and principles[M]. New York: Kluwer Academic Publishers, 2002. [7] FAN Lei. A new approach to quantitative domain theory[J]. Electronic Notes in Theoretical Computer Science, 2001, 45(1): 77-87. [8] YAO Wei, LU Lingxia. Fuzzy Galois connections on fuzzy posets[J]. Mathematical Logic Quarterly, 2009, 55(1): 105-112. [9] ZHANG Qiye, FAN Lei. Continuity in quantitative domains[J]. Fuzzy Sets and Systems, 2005, 154(1): 118-131. [10] ADÁMEK J, HERRLICH H, STRECKER G E. Abstract and concrete categories[M]. New York: Wiley Interscience, 1990. [11] GIERZ G, HOFMANN K H, KEIMEL K, et al. Continuous lattices and domains[M]. Cambridge: Cambridge University Press, 2003. [12] ROSENTHAL K I. Quantales and their applications[M]. New York: Longman Scientific & Technical, 1990. [13] BLOOM S L. Varieties of ordered algebras[J]. Journal of Computer and System Sciences, 1976, 13(2): 200-212. [14] YAO Wei. Quantitative domains via fuzzy sets: part I: continuity of fuzzy directed complete posets[J]. Fuzzy Sets and Systems, 2010, 161(7): 973-987. |
[1] | 付雪荣,姚海楼. 三角矩阵余代数上的倾斜余模[J]. 山东大学学报(理学版), 2016, 51(4): 25-29. |
[2] | 徐爱民. 关于Gorenstein内射余模[J]. 山东大学学报(理学版), 2016, 51(12): 7-9. |
[3] | 王正萍, 杨仁明. 弱Hopf群余代数的可裂扩张[J]. 山东大学学报(理学版), 2015, 50(12): 121-126. |
[4] | 陈华喜, 张崔斌, 董丽红. 广义Lie代数的Kegel定理[J]. 山东大学学报(理学版), 2014, 49(10): 38-44. |
[5] | 陈华喜1, 殷晓斌2. Hopf π-余模余代数的对偶[J]. J4, 2011, 46(12): 46-50. |
|