您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

山东大学学报(理学版) ›› 2018, Vol. 53 ›› Issue (4): 24-30.doi: 10.6040/j.issn.1671-9352.0.2017.581

• • 上一篇    下一篇

2-强Gorenstein半单环上模的结构及其应用

陈东1,王芳贵2,蹇红2,陈明钊2   

  1. 1.成都大学信息科学与工程学院, 四川 成都 610106;2.四川师范大学数学与软件科学学院, 四川 成都 610066
  • 收稿日期:2017-11-14 出版日期:2018-04-20 发布日期:2018-04-13
  • 作者简介:陈东(1983— ),男,硕士,讲师,研究方向为交换代数与同调代数. E-mail:chendong@cdu.edu.cn
  • 基金资助:
    国家自然科学基金资助项目(11671283)

Structure of modules over 2-strongly Gorenstein semisimple ring with its application

CHEN Dong1, WANG Fang-gui2, JIAN Hong2, CHEN Ming-zhao2   

  1. 1. College of Information Science and Engineering, Chengdu University, Chengdu 610106, Sichuan, China;
    2. College of Mathematics and Software Science, Sichuan Normal University, Chengdu 610066, Sichuan, China
  • Received:2017-11-14 Online:2018-04-20 Published:2018-04-13

摘要: 研究了局部2-强Gorenstein半单环上任一模M的结构,证明了M可以唯一分解为不可分解模的直和利用模M的直和分解,引入了有限生成模M的秩rank(M)的概念,证明了在有限局部2-强Gorenstein半单环上这样定义的秩就是线性码的信息位数。

关键词: 模的直和分解, 秩, 2-强Gorenstein半单环, 信息位数

Abstract: The structure of the module M over the local 2-strongly Gorenstein semisimple ring is investigated. Namely, M is uniquely decomposed into a direct sum of indecomposable modules. By the decomposition of M into direct sum, the definition of the rank of finitely generated module M is introduced. It is proved that, the rank defined over the local 2-strongly Gorenstein semisimple ring is the information bit of the linear codes.

Key words: 2-strongly Gorenstein semisimple ring, information bit, direct sum decomposition of modules, rank

中图分类号: 

  • O154
[1] MATLIS E. Injective modules over Noetherian rings[J]. Pacific J Math, 1958, 8(3):511-528.
[2] ENOCHS E E, HUANG Zhaoyong. Canonical filtrations of Gorenstein injective modules[J]. Proc Amer Math Soc, 2011, 139(7):2415-2421.
[3] YOSHINO Y. Cohen-Macaulay modules over Cohen-Macaulay rings[M]. Cambridge: Cambridge University Press, 1990.
[4] BENNIS D, HU Kui, WANG Fanggui. On 2-SG-semisimple rings[J]. Rocky Mountain J Math, 2015, 45:1093-1100.
[5] BENNIS D, MAHDOU N, OUARGHI K. Rings over which all modules are strongly Gorenstein projective[J]. Rocky Mountain J Math, 2007, 40(3):749-759.
[6] AUSLANDER M, BRIDGER M. Stable module theory[M]. Providence, RI: Amer Math Soc, 1969.
[7] BENNIS D.(n,m)-SG rings[J]. Mathematics, 2009, 35(2D):169-178.
[8] BENNIS D, MAHDOU N. A generalization of strongly Gorenstein projective modules[J]. J Algebra Appl, 2009, 8(2):219-227.
[9] BENNIS D, MAHDOU N. Strongly Gorenstein projective, injective and flat modules[J]. J Algebra Appl, 2007, 210(4):437-445.
[10] ENOCHS E E, JENDA O M G. Gorenstein injective and projective modules[J]. Math Z, 1995, 220(1):611-633.
[11] KASCH F, WALLACE D A R. Modules and rings[M]. New York: Academic Press, 1982.
[12] ROTMAN, JOSEPH J. An introduction to homological algebra[M]. New York: Academic Press, INC. 1979.
[13] ABUALRUB T, GHRAYEB A, OEHMKE R H. The rank of Z4 cyclic codes of length 2e[C] // First International Symposium on Control, Communications and Signal Processing. [S.l.] : IEEE, 2004: 651-654.
[14] DOUGHERTY S T, SHIROMOTO K. Maximum distance codes over rings of order 4[J]. IEEE Tran Inf Theory, 2001, 47(1):400-404.
[15] ZHU Shixin, SHI Minjia. The ranks of cyclic and negacyclic codes over the finite ring R[J]. Chin J Electron, 2008, 25(1):97-101.
[16] BONNECAZE A, UDAYA P. Cyclic codes and self-dual codes over F2+uF2[J]. IEEE Tran Inf Theory, 1999, 45(4): 1250-1255.
[17] ZHU Shixin, LI Yan, DENG Lin. A class of constacyclic MDS codes over Fq+uFq+…+us-1Fq[J]. Journal of University of Science and Technology of China, 2013, 3(3):197-201.
[1] 崔安刚,李海洋. 仿射约束矩阵秩最小问题与无约束矩阵秩最小问题的等价性[J]. 山东大学学报(理学版), 2016, 51(4): 86-89.
[2] 代丽芳, 梁茂林, 何万生. 广义对称约束条件下矩阵表达式A-BXC 的极秩问题[J]. 山东大学学报(理学版), 2015, 50(02): 90-94.
[3] 罗永贵,徐波,游泰杰. 半群PHn的每个星理想的秩和幂等元秩[J]. J4, 2013, 48(2): 42-48.
[4] 罗永贵. 半群W(n,r)的非群元秩和相关秩[J]. J4, 2013, 48(12): 70-74.
[5] 江静1,李宁2,王婷1. 一矩阵方程组可解条件的研究[J]. J4, 2013, 48(10): 47-50.
[6] 赵平. 半群V(n,r)的幂等元秩[J]. J4, 2012, 47(2): 78-81.
[7] 高荣海1,2,徐波1. 关于保序压缩奇异变换半群的秩[J]. J4, 2011, 46(6): 4-7.
[8] 赵平1, 游泰杰2, 徐波2,胡华碧1. 降序且保序有限部分变换半群的幂等元秩[J]. J4, 2011, 46(4): 75-77.
[9] 左可正. 关于矩阵多项式秩的二个恒等式[J]. J4, 2011, 46(4): 90-92.
[10] 刘晓光,畅大为*. 亏秩线性方程组PSD迭代法的最优参数[J]. J4, 2011, 46(12): 13-18.
[11] 张凤霞1,李莹1,2,郭文彬1,赵建立1. 分块Hermite阵与斜Hermite阵的最大秩与最小秩[J]. J4, 2010, 45(4): 106-110.
[12] 胡兴凯 伍俊良. 矩阵秩的下界和特征值估计[J]. J4, 2009, 44(8): 46-50.
[13] 胡付高,曾玉娥 . 一类矩阵多项式秩的恒等式与应用[J]. J4, 2008, 43(8): 51-54 .
[14] 张丽梅,乔立山,李 莹 . 可逆坡矩阵与坡矩阵的秩[J]. J4, 2007, 42(9): 122-126 .
[15] 杜 宁,郭卫华,吴大千,王 琦,王仁卿* . 昆嵛山典型林下灌草层植物种间关系研究[J]. J4, 2007, 42(3): 71-77 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!