您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

《山东大学学报(理学版)》 ›› 2019, Vol. 54 ›› Issue (6): 53-58.doi: 10.6040/j.issn.1671-9352.0.2018.300

• • 上一篇    

混合图的埃尔米特-关联能量

王维忠,周琨强   

  1. 兰州交通大学数理学院, 甘肃 兰州 730070
  • 发布日期:2019-06-05
  • 作者简介:王维忠(1976— ),男,博士,副教授,研究方向为代数图论. E-mail:jdslxywwz@163.com
  • 基金资助:
    国家自然科学基金资助项目(11561042)

On the Hermitian-incidence energy of mixed graphs

WANG Wei-zhong, ZHOU Kun-qiang   

  1. Department of Mathematics, Lanzhou Jiaotong University, Lanzhou 730070, Gansu, China
  • Published:2019-06-05

摘要: 主要建立了新的概念——混合图M的埃尔米特-关联能量HIE(M)=∑ni=1(qi)1/2(qi是M的埃尔米特-拟拉普拉斯矩阵的第i个特征值),利用M的顶点数、边数及最大度,给出了M的埃尔米特-关联能量的界。

关键词: 混合图, 埃尔米特-拟拉普拉斯矩阵, 埃尔米特-关联能量

Abstract: By introducing a new concept— Hermitian-incidence energy(HIE)of a mixed graph M, HIE(M)=∑ni=1(qi)1/2(where qi is the i-th eigenvalues of the Hermitian quasi-Laplacian matrix of M), we mainly point out some bounds to HIE using the number of vertices, edges, and the maximum degrees of M.

Key words: mixed graphs, Hermitian quasi-Laplacian matrix, Hermitian-incidence energy

中图分类号: 

  • O157.5
[1] LIU Jianxi, LI Xueliang. Hermitian-adjacency matrices and Hermitian energies of mixed graphs[J]. Linear Algebra and Its Applications, 2015, 466:182-207.
[2] YU Guihai, QU Hui. Hermitian Laplacian matrix and positive of mixed graphs[J]. Applied Mathematics and Computation, 2015, 269:70-76.
[3] YU Guihai, LIU Xin, QU Hui. Singularity of Hermitian(quasi-)Laplacian matrix of mixed graphs[J]. Applied Mathematics and Computation, 2017, 293:287-292.
[4] JOOYANDEH M R, KIANI D, MIRZAKHAH M. Incidence energy of a graph[J]. MATCH Communications in Mathematical and in Computer Chemistry, 2009, 62(3):561-572.
[5] WANG Weizhong, YANG Dong. Bounds for incidence energy of some graphs[J]. Journal of Applied Mathematics, 2013, 2013:1-7. http://dx.doi.org/10.1155/2013/757542.
[6] WANG Weizhong, LUO Yanfeng, GAO Xing. On incidence energy of some graphs[J]. Ars Combinatoria, 2014, 114:427-436.
[7] GUTMAN I, KIANI D, MIRZAKHAH M. On incidence energy of graphs[J]. MATCH Communications in Mathematical and in Computer Chemistry, 2009, 62(3):573-580.
[8] GUTMAN I, KIANI D, MIRZAKHAH M, et al. On incidence energy of a graph[J]. Linear Algebra and Its Applications, 2009, 431(8):1223-1233.
[9] ZHOU Bo. More upper bounds for the incidence energy[J]. MATCH Communications in Mathematical and in Computer Chemistry, 2010, 64(1):123-128.
[10] ZHANG Jianbin, LI Jianping. New results on the incidence energy of graphs[J]. MATCH Communications in Mathematical and in Computer Chemistry, 2012, 68(3):777-803.
[11] ROJO O, LENES E. A sharp upper bound on the incidence energy of graphs in terms of connectivity[J]. Linear Algebra and Its Applications, 2013, 438(3):1485-1493.
[12] DAS K C, GUTMAN I. On incidence energy of graphs[J]. Linear Algebra and Its Applications, 2014, 446:329-344.
[13] MADEN A D. New bounds on the incidence energy, randic energy and randic estrada index[J]. MATCH Communications in Mathematical and in Computer Chemistry, 2015, 74(2):367-387.
[14] ZHANG Xiaodong, LI Jiongsheng. The Laplacian spectrum of a mixed graph[J]. Linear Algebra and Its Applications, 2002, 353(1/2/3):11-20.
[15] BAPAT R B. Graph and matrices[M]. London: Springer, 2010.
[16] HORN R A, JOHNSON C R. Matrix analysis[M]. 2 eds. New York: Cambridge University Press, 2012.
[17] GUTMAN I, TRINAJSTIC N. Graph theory and molecular orbitals: total π-electron energy of alternant hydrocarbons[J]. Chemical Physics Letters, 1972, 17(4):535-538.
[1] 包丽娅,陈祥恩,王治文. 完全二部图K10,n(10≤n≤90)的点可区别E-全染色[J]. 《山东大学学报(理学版)》, 2018, 53(12): 23-30.
[2] 张友,黄丽娜,李沐春. 一类六角系统的点可区别边染色[J]. 《山东大学学报(理学版)》, 2018, 53(12): 41-47.
[3] 刘佳,孙磊. 不含4-圈或弦6-圈的平面图是(3,0,0)-可染的[J]. 《山东大学学报(理学版)》, 2018, 53(12): 31-40.
[4] 陈洪玲,王慧娟,高红伟. 可嵌入到欧拉示性数非负的曲面图的线性荫度[J]. 《山东大学学报(理学版)》, 2018, 53(12): 17-22.
[5] 李美莲,邓青英. 平图的transition多项式的Maple计算[J]. 山东大学学报(理学版), 2018, 53(10): 27-34.
[6] 刘小花,马海成. Q形图的匹配能序及Hosoya指标排序[J]. 山东大学学报(理学版), 2018, 53(8): 61-65.
[7] 寇艳芳,陈祥恩,王治文. K1,3,p K1,4,p的点可区别的IE-全染色及一般全染色[J]. 山东大学学报(理学版), 2018, 53(8): 53-60.
[8] 陈宏宇,张丽. 4-圈不共点的平面图的线性2-荫度[J]. 山东大学学报(理学版), 2017, 52(12): 36-41.
[9] 何玉萍,王治文,陈祥恩. mC8的点可区别全染色[J]. 山东大学学报(理学版), 2017, 52(10): 24-30.
[10] 李亭亭,劳会学. 一类混合型数论函数的均值估计[J]. 山东大学学报(理学版), 2017, 52(8): 70-74.
[11] 王晓丽,王慧娟,刘彬. 最大度为7的平面图全染色[J]. 山东大学学报(理学版), 2017, 52(8): 100-106.
[12] 王晔,孙磊. 不含3圈和4圈的1-平面图是5-可染的[J]. 山东大学学报(理学版), 2017, 52(4): 34-39.
[13] 陈祥恩,苗婷婷,王治文. 两条路的联图的点可区别I-全染色[J]. 山东大学学报(理学版), 2017, 52(4): 30-33.
[14] 马海成,李生刚. 有限拓扑的有向图表示[J]. 山东大学学报(理学版), 2017, 52(4): 100-104.
[15] 朱晓颖,逄世友. 控制数给定的树的最大离心距离和[J]. 山东大学学报(理学版), 2017, 52(2): 30-36.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!