《山东大学学报(理学版)》 ›› 2019, Vol. 54 ›› Issue (6): 59-70.doi: 10.6040/j.issn.1671-9352.0.2017.577
• • 上一篇
陈勋1,黄琼湘1*,陈琳2
CHEN Xun1, HUANG Qiong-xiang1*, CHEN Lin2
摘要: 如果图G的一个边着色用了1,2,…,t中的所有颜色,并且关联于G的同一个顶点的边上的颜色各不相同,且这些颜色构成了一个连续的整数区间,则称这个边着色是G的区间t-着色。如果对某个正整数t,G有一个区间t-着色,则称G是可区间着色的。所有可区间着色的图构成的集合记作N。图G的亏度def(G)是粘在G的顶点上使它可区间着色的悬挂边的最小数目,显然,G∈N当且仅当def(G)=0。广义θ-链是把路P=[v0,v1,…,vk](k≥1)的每一条边vi-1vi(i=1,2,…,k),用mi≥2条两两内部不交的(vi-1,vi)-路替换掉而得到的简单图,记作θm1,m2,…,mk。把广义θ-图亏度的结论进行推广,确定了θm1,m2,…,mk的亏度。
中图分类号:
[1] ASRATIAN A S, KAMALIAN R R. Interval colorings of edges of a multigraph[J]. Applied Mathematics, 1987, 5:25-34. [2] ASRATIAN A S, KAMALIAN R R. Investigation on interval edge-colorings of graphs[J]. Journal of Combinatorial Theory, Series B, 1994, 62(1):34-43. [3] KAMALIAN R R. Interval edge colorings of graphs[D]. Novosibirsk:[s.l.] , 1990. [4] GIARO K, KUBALE M, MAAFIEJSKI M. Consecutive colorings of the edges of general graphs[J]. Discrete Mathematics, 2001, 236(1):131-143. [5] AXENOVICH M A. On interval colorings of planar graphs[J]. Congressus Numerantium, 2002, 159:77-94. [6] KAMALIAN R R, PETROSYAN P A. A note on interval edge-colorings of graphs[J]. Mathematical Problems of Computer Science, 2012, 36:13-16. [7] KAMALIAN R R. Interval colorings of complete bipartite graphs and trees[J]. Undergraduate Topics in Computer Science, 2013:183-231. [8] 陶艳亮. 图的区间边着色的收缩图方法[D]. 乌鲁木齐:新疆大学, 2017. TAO Yanliang. Contraction graph method for the interval edge-coloring of graphs[D]. Urumqi: Xinjiang University, 2017. [9] PETROSYAN P A. Interval edge-colorings of complete graphs and n-dimensional cubes[J]. Discrete Mathematics, 2010, 310:1580-1587. [10] PETROSYAN P A, KHACHATRIAN H H, TANANYAN H G. Interval edge-colorings of Cartesian products of graphs I[J]. Discussiones Mathematicae Graph Theory, 2013, 33:613-632. [11] PETROSYAN P A. Interval edge-colorings of Möbius ladders[J]. Proceedings of the CSIT Conference, 2005: 146-149. [12] GIARO K, KUBALE M, MAAFIEJSKI M. On the deficiency of bipartite graphs[J]. Discrete Applied Mathematic, 1999, 94:193-203. [13] 张维娟.单圈图和双圈图的连续边着色[J].新疆大学学报(自然科学版), 2006, 23(1):20-24. ZHANG Weijuan. Consecutive colorings of the edges of unicyclic and bicyclic graphs[J]. Journal of Xinjiang University, 2006, 23(1):20-24. [14] BOROWIECKA-OLSZEWSKA M, DRGAS-BURCHARDT E. The deficiency of all generalized Hertz graphs and minimal consecutively non-colourable graphs in this class[J]. Discrete Mathematics, 2016, 339(7):1892-1908. [15] BOROWIECKA-OLSZEWSKA M, DRGAS-BURCHARDT E, HAŁUSZCZAK M. On the structure and deficiency of k-trees with bounded degree[J]. Discrete Applied Mathematic, 2016, 201:24-37. [16] PETROSYAN P A, KHACHATRIAN H H. Further results on the deficiency of graphs[J]. Discrete Applied Mathematics, 2017, 226:117-126. [17] FENG Yongde, HUANG Qiongxiang. Consecutive edge-coloring of the generalized θ-graph[J]. Discrete Applied Mathematics, 2007, 155(17):2321-2327. |
[1] | 包丽娅,陈祥恩,王治文. 完全二部图K10,n(10≤n≤90)的点可区别E-全染色[J]. 《山东大学学报(理学版)》, 2018, 53(12): 23-30. |
[2] | 张友,黄丽娜,李沐春. 一类六角系统的点可区别边染色[J]. 《山东大学学报(理学版)》, 2018, 53(12): 41-47. |
[3] | 陈洪玲,王慧娟,高红伟. 可嵌入到欧拉示性数非负的曲面图的线性荫度[J]. 《山东大学学报(理学版)》, 2018, 53(12): 17-22. |
[4] | 刘佳,孙磊. 不含4-圈或弦6-圈的平面图是(3,0,0)-可染的[J]. 《山东大学学报(理学版)》, 2018, 53(12): 31-40. |
[5] | 李美莲,邓青英. 平图的transition多项式的Maple计算[J]. 山东大学学报(理学版), 2018, 53(10): 27-34. |
[6] | 寇艳芳,陈祥恩,王治文. K1,3,p和 K1,4,p的点可区别的IE-全染色及一般全染色[J]. 山东大学学报(理学版), 2018, 53(8): 53-60. |
[7] | 刘小花,马海成. Q形图的匹配能序及Hosoya指标排序[J]. 山东大学学报(理学版), 2018, 53(8): 61-65. |
[8] | 陈宏宇,张丽. 4-圈不共点的平面图的线性2-荫度[J]. 山东大学学报(理学版), 2017, 52(12): 36-41. |
[9] | 何玉萍,王治文,陈祥恩. mC8的点可区别全染色[J]. 山东大学学报(理学版), 2017, 52(10): 24-30. |
[10] | 李亭亭,劳会学. 一类混合型数论函数的均值估计[J]. 山东大学学报(理学版), 2017, 52(8): 70-74. |
[11] | 王晓丽,王慧娟,刘彬. 最大度为7的平面图全染色[J]. 山东大学学报(理学版), 2017, 52(8): 100-106. |
[12] | 陈祥恩,苗婷婷,王治文. 两条路的联图的点可区别I-全染色[J]. 山东大学学报(理学版), 2017, 52(4): 30-33. |
[13] | 马海成,李生刚. 有限拓扑的有向图表示[J]. 山东大学学报(理学版), 2017, 52(4): 100-104. |
[14] | 王晔,孙磊. 不含3圈和4圈的1-平面图是5-可染的[J]. 山东大学学报(理学版), 2017, 52(4): 34-39. |
[15] | 朱晓颖,逄世友. 控制数给定的树的最大离心距离和[J]. 山东大学学报(理学版), 2017, 52(2): 30-36. |
|