您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

《山东大学学报(理学版)》 ›› 2019, Vol. 54 ›› Issue (10): 24-32.doi: 10.6040/j.issn.1671-9352.0.2018.671

• • 上一篇    

含Hardy位势的非强制拟线性椭圆方程解的存在性

夏吾吉毛1,黄水波1*,邓德杰2   

  1. 1.西北民族大学数学与计算机科学学院, 甘肃 兰州 730030;2.青海民族大学数学与统计学院, 青海 西宁 810000
  • 发布日期:2019-10-12
  • 作者简介:夏吾吉毛(1995— ),女,硕士研究生,研究方向为偏微分方程理论及其应用. E-mail:1838911989@qq.com*通信作者简介:黄水波(1979— ),男,博士,副教授,研究方向为偏微分方程理论及其应用. E-mail:huangshuibo2008@163.com
  • 基金资助:
    国家自然科学基金资助项目(11761059);全国民族教育科研一般课题资助项目(ZXYB18019);数学甘肃省重点学科资助项目

Existence of solutions for non-coercivity quasilinear elliptic equations with Hardy potential

XIAWU Ji-mao1, HUANG Shui-bo1*, DENG De-jie2   

  1. 1. School of Mathematics and Computer Science, Northwest Minzu University, Lanzhou 730000, Gansu, China;
    2. School of Mathematics and Statistics, Qinghai Nationalities University, Xining 810000, Qinghai, China
  • Published:2019-10-12

摘要: 主要研究了一类含Hardy位势和低阶项的非强制拟线性椭圆方程解的存在性和正则性,重点考虑了低阶项的正则化效应和Hardy位势对解的存在性的影响。

关键词: 非强制性, 正则化效应, Hardy 位势, 拟线性椭圆方程

Abstract: This paper studies the existence and regularity of solutions to non-coercivity quasilinear elliptic problems with lower order terms and the Hardy potential, and focuses on the regularizing effect of lower order terms and the influence of the Hardy potential.

Key words: non-coercivity, regularizing effect, Hardy potential, quasilinear elliptic problem

中图分类号: 

  • O175.25
[1] PORRETTA A. Uniqueness and homogenization for a class of noncoercive operators in divergence form[J]. Atti Del Seminario Matematico e Fisico Universita di Modena, 1998, 46(suppl):915-936.
[2] BOCCARDO L. Some elliptic problems with degenerate coercivity[J]. Advanced Nonlinear Studies, 2006, 6(1):1-12.
[3] BOCCARDO L, BRIZIS H. Some remarks on a class of elliptic equations with degenerate coercivity[J]. Bollettino Della Unione Matematica Italiana, 2003, 9(3):521-530.
[4] BOCCARDO L, DALL'AGLIO A, ORSINA L. Existence and regularity results for some elliptic equations with degenerate coercivity[J]. Atti Del Seminario Matematico e Fisico Universita di Modena, 1998, 46(suppl):51-82.
[5] CIRMI G R. On the existence of solutions to non-linear degenerate elliptic equations with measures data[J]. Ricerche Mat, 1993, 42(2):315-329.
[6] GIACHETTI D, PORZIO M M. Existence results for some nonuniformly elliptic equations with irregular data[J]. Journal of Mathematical Analysis and Applications, 2001, 257(1):100-130.
[7] GIACHETTI D, PORZIO M M. Elliptic equations with degenerate coercivity: gradient regularity[J]. Acta Mathematica Sinica, 2003, 19(2):349-370.
[8] ALVINO A, BOCCARDO L, FERONE V, et al. Existence results for nonlinear elliptic equations with degenerate coercivity[J]. Annali di Matematica Pura ed Applicata, 2003, 182(1):53-79.
[9] MERCALDO A, PERAL I, PRIMO A. Results for degenerate nonlinear elliptic equations involving a Hardy potential[J]. Journal of Differential Equations, 2011, 251(11):3114-3142.
[10] GISELLA C. The regularizing effects of some lower order terms in an elliptic equation with degenerate coercivity[J]. Rendiconti Di Matematica E Delle Sue Applicazioni, 2010, 27(3/4):299-314.
[11] ORSINA L, PRIGNET A. Non-existence of solutions for some nonlinear elliptic equations involving measures[J]. Proceedings of the Royal Society of Edinburgh Section A: Mathematics, 2000, 130(1):167-187.
[12] BÉNILAN P, BOCCARDO L, GALLOUËT T, et al. An L1 theory of existence and uniqueness of nonlinear elliptic equations[J]. Annali Della Scuola Normale Superiore di Pisa-Classe di Scienze, 1995, 22(2):241-273.
[1] 张瑞敏,林迎珍. 多点周期边值问题新的再生核方法[J]. J4, 2013, 48(12): 42-46.
[2] 伍 芸,姚仰新,柯 敏 . 含Hardy位势的双调和方程特征值问题[J]. J4, 2008, 43(9): 81-84 .
[3] 桑彦彬,陈娟,任艳. 带有Hardy项的奇异p-重调和方程正解的唯一性[J]. 《山东大学学报(理学版)》, 2019, 54(6): 75-80.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!