《山东大学学报(理学版)》 ›› 2020, Vol. 55 ›› Issue (3): 70-80.doi: 10.6040/j.issn.1671-9352.4.2019.068
• • 上一篇
刘营营1,米据生1*,梁美社1,2,李磊军1
LIU Ying-ying1, MI Ju-sheng1*, LIANG Mei-she1,2, LI Lei-jun1
摘要: 分别在完备和不完备形式背景下提出了三支区间集概念格模型,然后讨论对象诱导的三支区间集概念格与区间集概念格之间的关系,证明由区间集概念得到对象诱导的三支区间集概念的充要条件,并设计相应的算法。最后讨论对象诱导的三支区间集概念与经典概念之间的联系,证明由经典概念得到对象诱导的三支区间集概念的充要条件,并设计相应的算法。
中图分类号:
[1] WILLE R. Restructuring lattice theory: an approach based on hierarchies of concept[M]. Reidel: Dordrecht-Boston, 1982: 445-470. [2] GANTER B, WILLE R. Formal concept analysis: mathematical foundations[M]. Berlin: Springer, 1999: 79-90. [3] YAO Yiyu. Interval-set algebra for qualitative knowledge representation[C] // Proceedings of the 5th International Conference on Computing and Information. Washington: IEEE, 1993: 370-375. [4] 徐伟华, 李金海, 魏玲,等. 形式概念分析: 理论与应用[M]. 北京: 科学出版社, 2016: 69-88. XU Weihua, LI Jinhai, WEI Ling, et al. The formal concept analysis: theory and application[M]. Beijing: Science Press, 2016: 69-88. [5] YAO Yiyu. Interval sets and three-way concept analysis in incomplete contexts[J]. International Journal of Machine Learning and Cybernetics, 2017, 8(1):3-20. [6] 钱婷, 贺晓丽. 区间集概念格的构造理论研究[J]. 西北大学学报(自然科学版), 2017, 47(3):330-335. QIAN Ting, HE Xiaoli. The construction theoretical research of interval-set concept lattice[J]. Journal of Northwest University(Natural Science), 2017, 47(3):330-335. [7] 张恩胜. 区间集概念格属性约简的组成与结构[J]. 山东大学学报(理学版), 2018, 53(8):17-24. ZHANG Ensheng. Composition and structure on attribute reduction of interval-set concept lattices[J]. Journal of Shandong University(Natural Science), 2018, 53(8):17-24. [8] YU Huiying, LI Qingguo, CAI Mingjie. Characteristics of three-way concept lattice and three-way rough concept lattice[J]. Knowledge-Based Systems, 2018, 146:181-189. [9] FENG Tao, FAN Huitao, MI Jusheng. Uncertainty and reduction of variable precision multigranulation fuzzy rough sets based on three-way decisions[J]. International Journal of Approximate Reasoning, 2017, 85:36-58. [10] LI Jinhai, MEI Changlin, LV Yuejin. Incomplete decision contexts: approximate concept construction, rule;acquisition and knowledge reduction[J]. International Journal of Approximate Reasoning, 2013, 54(1):149-165. [11] QI Jianjun, WEI Ling, YAO Yiyu. Three-way formal concept analysis[J]. Lecture Notes in Computer Science, 2014, 8818:732-741. [12] LI Meizheng, WANG Guoyin. Approximate concept construction with three-way decisions and attribute reduction in incomplete contexts[J]. Knowledge-Based Systems, 2016, 91:165-178. [13] WEI Ling, QIAN Ting. The three-way object oriented concept lattice and the three-way property oriented concept lattice[C] // 2015 International Conference on Machine Learning and Cybernetics, Guangzhou: IEEE, 2015: 854-859. [14] REN Ruisi, WEI Ling. The attribute reductions of three-way concept lattice[J]. Knowledge-Based Systems, 2016, 99:92-102. [15] QI Jianjun, QIAN Ting, WEI Ling. The connections between three-way and classical concept lattice[J]. Knowledge-Based Systems, 2016, 91:143-151. [16] 李金海, 吴伟志, 邓硕. 形式概念分析的多粒度标记理论[J]. 山东大学学报(理学版), 2019, 54(2):30-40. LI Jinhai, WU Weizhi, DENG Shuo. Multi-scale theory in formal concept analysis[J]. Journal of Shandong University(Natural Science), 2019, 54(2):30-40. [17] MI Jusheng, YEE Leung, WU Weizhi. Approaches to attribute reduction in concept lattice induced by axialities[J]. Knowledge-Based Systems, 2010, 23(6):504-511. [18] 胡谦, 米据生, 李磊军. 多粒度模糊粗糙近似算子的信任结构与属性约简[J]. 山东大学学报(理学版), 2017, 52(7):30-36. HU Qian, MI Jusheng, LI Leijun. The fuzzy belief structure and attribute reduction based on multi-granulation fuzzy rough operators[J]. Journal of Shandong University(Natural Science), 2017, 52(7):30-36. [19] KONECNY J. On efficient factorization of standard fuzzy concept lattice and attribute-oriented fuzzy concept lattice[J]. Fuzzy Sets and Systems, 2018, 351:108-121. [20] EDUARD B, JAN K. L-concept lattices with positive and negative attributes: modeling uncertainty and reduction of size[J]. Information Sciences, 2019, 472:163-179. [21] CIOBANU G, VĂIDEANU C. A note on similarity relations between fuzzy attribute-oriented concept lattices[J]. Information Sciences, 2018, 460/461:254-263. |
[1] | 李粉宁,范敏,李金海. 形式概念分析中面向对象粒概念的动态更新[J]. 《山东大学学报(理学版)》, 2019, 54(4): 105-115. |
[2] | 李金海,吴伟志,邓硕. 形式概念分析的多粒度标记理论[J]. 《山东大学学报(理学版)》, 2019, 54(2): 30-40. |
[3] | 张恩胜. 区间集概念格属性约简的组成与结构[J]. 山东大学学报(理学版), 2018, 53(8): 17-24. |
[4] | 任睿思,魏玲,祁建军. 三支弱协调决策形式背景的规则获取[J]. 山东大学学报(理学版), 2018, 53(6): 76-85. |
[5] | 黄桃林,牛娇娇,李金海. 基于粒辨识属性矩阵的动态形式背景约简更新方法[J]. 山东大学学报(理学版), 2017, 52(7): 13-21. |
[6] | 李金海,吴伟志. 形式概念分析的粒计算方法及其研究展望[J]. 山东大学学报(理学版), 2017, 52(7): 1-12. |
[7] | 刘琳,魏玲,钱婷. 决策形式背景中具有置信度的三支规则提取[J]. 山东大学学报(理学版), 2017, 52(2): 101-110. |
[8] | 陈雪,魏玲,钱婷. 基于AE-概念格的决策形式背景属性约简[J]. 山东大学学报(理学版), 2017, 52(12): 95-103. |
[9] | 乔希民,吴洪博. 区间集上非交换剩余格的〈,(-overQ)〉-fuzzy滤子及其特征刻画[J]. 山东大学学报(理学版), 2016, 51(2): 102-107. |
[10] | 覃丽珍, 李金海, 王扬扬. 基于概念格的知识发现及其在高校就业数据分析中的应用[J]. 山东大学学报(理学版), 2015, 50(12): 58-64. |
[11] | 张春英, 王立亚, 刘保相. 基于覆盖的区间概念格动态压缩原理与实现[J]. 山东大学学报(理学版), 2014, 49(08): 15-21. |
[12] | 汤亚强, 范敏, 李金海. 三元形式概念分析下的认知系统模型及信息粒转化方法[J]. 山东大学学报(理学版), 2014, 49(08): 102-106. |
[13] | 王彬弟,魏玲. 基于关联格的概念格约简理论[J]. J4, 2010, 45(9): 20-26. |
[14] | 张清华1,2,幸禹可2,王国胤2. 概念知识粒与概念信息粒的相互转化[J]. J4, 2010, 45(9): 1-6. |
[15] | 张春英,薛佩军,刘保相 . CS(K)上的S-粗集特征[J]. J4, 2006, 41(2): 18-23 . |
|