《山东大学学报(理学版)》 ›› 2020, Vol. 55 ›› Issue (8): 1-5.doi: 10.6040/j.issn.1671-9352.0.2019.869
• •
李园,姚海楼*
LI Yuan, YAO Hai-lou*
摘要: 对于一个余代数,首先引入了余模的(预)覆盖的概念并给出关于它的一些性质;然后,引入了极大倾斜余模和覆盖余模的概念,并证明倾斜挠自由类和极大倾斜余模之间存在一个双射;最后,得到了在余代数中当倾斜挠自由类是覆盖类时,它是由覆盖余模唯一表示的。
中图分类号:
[1] BRENNER S, BUTLER M. Generalnizations of the Bernstein-Gelfand-Ponomarev reflections fuctors[M] // Representation Theory Ⅱ. Lecture Notes in Mathematics, Vol. 832. Berlin: Springer, 1980: 103-169. [2] HAPPEL D, RINGEL C M. Tilted algebras[J]. Trans Amer Math Soc, 1982, 274:399-443. [3] COLPI R, TONOLO A, TRLIFAJ J. Partial cotilting modules and the lattices induced by them[J]. Comm Algebra, 1997, 25(10):3225-3237. [4] HÜGEL L. Tilting preenvelopes and cotilting precovers[J]. Algebras and Representation Theory, 2001, 4:155-170. [5] DOI Y. Homological coalgebra[J]. J Math Soc Japan, 1981, 33(1):31-50. [6] SIMSON D. Hom-computable coalgebras, a composition factors matrix and an Euler bilinear form of an Euler coalgebra[J]. J Algebra, 2007, 315(1):42-75. [7] SIMSON D. Cotilted coalgebras and tame comodule type[J]. Arab J Sci Eng, 2008, 33(2):421-445. [8] SIMSON D. Coalgebras, comodules, pseudocompact algebras and tame comodule comodule type[J]. Colloq Math, 2001, 90(1):101-150. [9] CHIN W, SIMSON D. Coxeter transformation and inverses of Cartan matrices for coalgebras[J]. J Algebra, 2010, 324(9):2223-2248. [10] CHIN W. A brief introduction to coalgebra representation theory[J]. Lect Notes Pure Appl Math, 2004, 237:109-131. [11] LIN B I-P. Semiperfect coalgebras[J]. J Algebra, 1977, 49(2):357-373. [12] WANG M Y. Tilting comodules over semi-perfect coalgebras[J]. Algebra Colloq, 1999, 6(4):461-472. |
[1] | 丰 晓,张顺华 . τ-平坦试验模与τ-平坦覆盖[J]. J4, 2007, 42(1): 31-34 . |
|