您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

《山东大学学报(理学版)》 ›› 2021, Vol. 56 ›› Issue (2): 7-16.doi: 10.6040/j.issn.1671-9352.0.2020.418

• • 上一篇    

非对合剩余格的犹豫模糊理想

刘春辉   

  1. 赤峰学院数学与计算机科学学院, 内蒙古 赤峰 024001
  • 发布日期:2021-01-21
  • 作者简介:刘春辉(1982— ), 男, 硕士, 教授, 研究方向为非经典逻辑、Domain理论与拓扑学. E-mail:chunhuiliu1982@163.com
  • 基金资助:
    内蒙古自治区高等学校科学研究项目(NJZY18206)

Hesitant fuzzy ideals in non-involutive residuated lattices

LIU Chun-hui   

  1. School of Mathematics and Computer Science, Chifeng University, Chifeng 024001, Inner Mongolia, China
  • Published:2021-01-21

摘要: 运用犹豫模糊集的方法和原理研究非对合剩余格的理想问题。引入了非对合剩余格的犹豫模糊理想概念,给出了犹豫模糊理想的若干性质,获得了犹豫模糊理想的若干等价刻画,讨论了犹豫模糊理想与理想间的关系。证明了非对合剩余格的犹豫模糊理想的犹豫模糊交集、同态像和同态原像仍为犹豫模糊理想。同时,给出了犹豫模糊理想的犹豫模糊并集成为犹豫模糊理想的一个充分条件。为进一步揭示非对合剩余格的结构特征拓展了研究思路。

关键词: 模糊逻辑, 逻辑代数, 非对合剩余格, 犹豫模糊理想, 同态

Abstract: In this paper, the problem of ideals in non-involutive residuated lattices is studied by using the method and principle of hesitant fuzzy sets. The notion of hesitant fuzzy ideals of non-involutive residuated lattices is introduced. Some properties of hesitant fuzzy ideals are investigated. Some equivalent characterizations of hesitant fuzzy ideals are obtained. The relation between hesitant fuzzy ideals and ideals is discussed. It is proved that the hesitant fuzzy intersection of some hesitant fuzzy ideals, homomorphism image and inverse image of a hesitant fuzzy ideal are also hesitant fuzzy ideals. At the same time, a sufficient condition which makes the hesitant fuzzy union of some hesitant fuzzy ideals to be a hesitant fuzzy ideal is given. This work further expands the way for revealing the structural characteristics of non-involutive residuated lattices.

Key words: fuzzy logic, logical algebra, non-involutive residuated lattice, hesitant fuzzy ideal, homomorphism

中图分类号: 

  • O141.1
[1] 王国俊. 非经典数理逻辑与近似推理[M]. 北京: 科学出版社, 2003. WANG Guojun. Nonclassical mathematical logic and approximate reasoning[M]. Beijing: Science Press, 2003.
[2] PAVELKA J. On fuzzy logic I[J]. Zeitschrift F Math Logic and Grundlagend Math, 1979, 25(1):45-52.
[3] WANG Guojun, ZHOU Hongjun. Introduction to mathematical logic and resolution principle[M]. 2nd ed. Beijing: Science Press, 2009.
[4] HÁJEK P. Metamathematics of fuzzy logic[M]. Dordrecht: Kluwer Academic Publishers, 1998.
[5] XU Yang, RUAN Da, QIN Keyun, et al. Lattice-valued logics[M]. Berlin: Springer, 2003.
[6] MICHIRO K, WIESLAW A D. Filter theory of BL-algebras[J]. Soft Computing, 2008, 12(5):419-423.
[7] LIU Lianzhen, LI Kaitai. Boolean filters and positive implicative filters of residuated lattices[J]. Information Sciences, 2007, 177(24):5725-5738.
[8] ZHU Yiquan, XU Yang. On filter theory of residuated lattices[J]. Information Sciences, 2010, 180(19):3614-3632.
[9] VAN G, DESCHRIJVER G, CORNELIS C, et al. Filters of residuated lattices and triangle algebras[J]. Information Sciences, 2010, 180(16):3006-3020.
[10] DUMITRU B, DANA P. Some types of filters on residuated lattices[J]. Soft Computing, 2014, 18(12):825-837.
[11] WARD M, DILWORTH R P. Residuated lattices[J]. Transactions of the American Mathematical Society, 1939, 45(3):335-354.
[12] ZHANG Xiaohong, QIN Keyun, DUDEK W. Ultra LI-ideals in lattice implication algebras and MTL-algebras[J]. Czechoslovak Math Journal, 2007, 57(6):591-605.
[13] LELE C, NGANOU J B. MV-algebras derived from ideals in BL-algebras[J]. Fuzzy Sets and Systems, 2013, 218(5):103-113.
[14] 刘春辉. 否定非对合剩余格的LI-理想理论[J]. 高校应用数学学报(A辑), 2015, 30(4):445-456. LIU Chunhui. LI-ideals theory in negative non-involutive residuated lattices[J]. Applied Mathematics A Journal of Chinese Universities(Ser.A), 2015, 30(4):445-456.
[15] LIU Yi, QIN Yao, QIN Xiaoyan, et al. Ideals and fuzzy ideals on residuated lattices[J]. International Journal of Machine Learning and Cybernetics, 2017, 8(1):239-253.
[16] ZADEH L A. Fuzzy sets[J]. Information and Control, 1965, 8(3):338-353.
[17] TORRA V, NARUKAWA Y. On hesitant fuzzy sets decision[C] //The 18th IEEE International Conference on Fuzzy Systems. Jeju Island, Korea, 2009: 1378-1382.
[18] TORRA V. Hesitant fuzzy sets[J]. International Journal of Intelligent Systems, 2010, 25(6):529-539.
[19] WEI Guiwu. Hesitant fuzzy prioritized operations and their application to multiple attribute decision making[J]. Knowledge-Based Systems, 2012, 31(7):176-182.
[20] VERMA R, SHARMA B D. New operations over hesitant fuzzy sets[J]. Fuzzy Informations and Engineering, 2013, 5(4):129-146.
[21] XU Zeshui. Hesitant fuzzy sets theory[M]. New York: Springer, 2013.
[22] JUN Y B, SONG S Z. Hesitant fuzzy prefilters and filters of EQ-algebras[J]. Applied Mathematicla Science, 2015, 9(11):515-532.
[23] JUN Y B, SUN S A. Hesitant fuzzy set theory applied to BCK/BCI-algebras[J]. J Computational Analysis and Applications, 2016, 20(4):635-646.
[24] 彭家寅. 剩余格的犹豫模糊滤子理论[J]. 计算机科学与探索, 2017, 11(11):1860-1870. PENG Jiayin. Hesitant fuzzy filters theory of residuated lattices[J]. Journal of Frontiers of Computer Science and Technology, 2017, 11(11):1860-1870.
[25] 刘春辉. Fuzzy蕴涵代数的犹豫模糊滤子[J]. 模糊系统与数学, 2018, 32(3):29-37. LIU Chunhui. Hesitant fuzzy filters in fuzzy implication algebras[J]. Fuzzy Systems and Mathematics, 2018, 32(3):29-37.
[26] 傅小波,张建忠. 格蕴涵代数的反犹豫模糊滤子[J]. 模糊系统与数学, 2020, 34(2):34-43. FU Xiaobo, ZHANG Jianzhong. The anti-hesitant fuzzy filters in lattice implication algebras[J]. Fuzzy Systems and Mathematics, 2020, 34(2):34-43.
[1] 林明星. 基于变分结构引导滤波的低照度图像增强算法[J]. 《山东大学学报(理学版)》, 2020, 55(9): 72-80.
[2] 谢伟,郭继东. 中心二面体群与二面体群之间的同态个数[J]. 《山东大学学报(理学版)》, 2020, 55(8): 80-86.
[3] 马海峰,杨家海,薛庆水,鞠兴忠,朱浩之,林涛,原鑫鑫. 一种非同频远程数据持有检测方法[J]. 《山东大学学报(理学版)》, 2020, 55(5): 81-87.
[4] 张茜,苏烨,秦静. 集合成员关系判定的安全多方计算协议[J]. 《山东大学学报(理学版)》, 2020, 55(4): 118-126.
[5] 张敏情,周能,刘蒙蒙,王涵,柯彦. 基于Paillier的同态加密域可逆信息隐藏[J]. 《山东大学学报(理学版)》, 2020, 55(3): 1-8,18.
[6] 赖吉娜,郭继东. 一类非交换群与二面体群之间的同态个数[J]. 《山东大学学报(理学版)》, 2020, 55(12): 30-36.
[7] 李凤娇,高百俊. 两类非交换群之间的同态数量[J]. 《山东大学学报(理学版)》, 2020, 55(12): 25-29.
[8] 刘春辉,张海燕,李玉毛. 否定非对合剩余格的双极值模糊理想格[J]. 《山东大学学报(理学版)》, 2019, 54(9): 29-35.
[9] 李红霞,郭继东,海进科. 二面体群到一类亚循环群之间的同态个数[J]. 《山东大学学报(理学版)》, 2019, 54(6): 34-40.
[10] 刘春辉,李玉毛,张海燕. 否定非对合剩余格的双极值模糊理想[J]. 《山东大学学报(理学版)》, 2019, 54(5): 88-98.
[11] 刘春辉. Heyting代数的扩张模糊滤子[J]. 《山东大学学报(理学版)》, 2019, 54(2): 57-65.
[12] 赵艳微,海进科. 关于群同态的T.Asai和T.Yoshida问题[J]. 《山东大学学报(理学版)》, 2019, 54(2): 101-105.
[13] 李宁英,郭继东,海进科. 具有Abel直因子的群到有限群间的同态个数[J]. 《山东大学学报(理学版)》, 2019, 54(12): 59-62.
[14] 刘春辉. 否定非对合剩余格的双极值模糊素理想[J]. 《山东大学学报(理学版)》, 2019, 54(11): 71-80.
[15] 张良,海进科. 亚循环群到亚循环群之间的同态个数[J]. 山东大学学报(理学版), 2018, 53(6): 17-22.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!