您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

《山东大学学报(理学版)》 ›› 2019, Vol. 54 ›› Issue (11): 71-80.doi: 10.6040/j.issn.1671-9352.0.2019.245

• • 上一篇    下一篇

否定非对合剩余格的双极值模糊素理想

刘春辉   

  1. 赤峰学院数学与计算机科学学院, 内蒙古 赤峰 024001
  • 发布日期:2019-11-06
  • 作者简介:刘春辉(1982— ), 男, 硕士, 副教授,研究方向为非经典逻辑、Domain理论与拓扑学. E-mail:chunhuiliu1982@163.com
  • 基金资助:
    内蒙古自治区高等学校科学研究项目(NJZY18206)

Bipolar fuzzy prime ideals in negative non-involutive residuated lattices

LIU Chun-hui   

  1. School of Mathematics and Computer Science, Chifeng University, Chifeng 024001, Inner Mongolia, China
  • Published:2019-11-06

摘要: 对否定非对合剩余格的双极值模糊理想问题作进一步深入研究。引入双极值模糊素理想(简称BF-素理想)概念并考察其性质特征。获得了BF-素理想的一些等价刻画, 建立了预线性否定非对合剩余格中的BF-素理想定理, 证明了BF-素理想的NRL-同态像与原像仍为BF-素理想。为进一步揭示否定非对合剩余格的结构特征拓展了研究思路。

关键词: 模糊逻辑, 逻辑代数, 否定非对合剩余格, 双极值模糊理想, 双极值模糊素理想

Abstract: The problem of bipolar fuzzy ideals is further studied in negative non-involutive residuated lattices. The concept of bipolar fuzzy prime ideal(BF-prime ideal for short)is introduced and its properties are investigated. Some equivalent characterizations of BF-prime ideal are obtained. The BF-prime ideal theorem in a prelinearity negative non-involutive residuated lattice is established. It is proved that the NRL-homomorphism image and the inverse image of a BF-prime ideal are also BF-prime ideals. This work further expands the way for revealing the structural characteristics of negative non-involutive residuated lattices.

Key words: fuzzy logic, logical algebra, negative non-involutive residuated lattice, bipolar fuzzy ideal, bipolar fuzzy prime ideal

中图分类号: 

  • O141.1
[1] 王国俊. 非经典数理逻辑与近似推理[M]. 北京: 科学出版社, 2003. WANG Guojun. Nonclassical mathematical logic and approximate reasoning[M]. Beijing: Science Press, 2003.
[2] WARD M, DILWORTH R P. Residuated lattices[J]. Transactions of the American Mathematical Society, 1939, 45(3): 335-354.
[3] PAVELKA J. On fuzzy logic I[J]. Zeitschrift F Math Logic and Grundlagend Math, 1979, 25(1): 45-52.
[4] WANG Guojun, ZHOU Hongjun. Introduction to mathematical logic and resolution principle[M]. 2nd ed. Beijing: Science Press, 2009.
[5] HÁJEK P. Metamathematics of fuzzy logic[M]. Dordrecht, Netherlands: Kluwer Academic Publishers, 1998.
[6] XU Yang, RUAN D, QIN Keyun, et al. Lattice-valued logics[M]. Berlin: Springer, 2003.
[7] 刘春辉. 否定非对合剩余格的LI-理想理论[J]. 高校应用数学学报, 2015, 30(4): 445-456. LIU Chunhui. LI-ideals theory in negative non-involutive residuated lattices[J]. Applied Mathematics A Journal of Chinese Universities, 2015, 30(4): 445-456.
[8] LIU Yi, QIN Yao, QIN Xiaoyan, et al. Ideals and fuzzy ideals on residuated lattices[J]. International Journal of Machine Learning and Cybernetics, 2017, 8(1): 239-253.
[9] ZADEH L A. Fuzzy sets[J]. Information and Control, 1965, 8(3): 338-353.
[10] ZHANG W R. Bipolar fuzzy sets and relations: a computational framework for cognitive modeling and multiagent decision analysis[C] //Proceedings of the First International Joint Conference of the North American Fuzzy Information Processing Society Biannual Conference. Berln: Springer, 1994: 305-309.
[11] ZHANG W R. Yin yang bipolar relativity: a unifying theory of nature, agents and causality with applications in quantum computing, cogintive informatics and lift sciences[M]. Hershey, USA: IGI Global, 2011.
[12] SAEID A B, RAFSANJANI M K. Some results in bipolar-valued fuzzy BCK/BCI-algebras[C] //Proceedings of International Conference on Networked Digital Technologies. Prague: Springer, 2010: 163-168.
[13] MAJUNDER S K. Bipolar-valued fuzzy in Γ-semigroups[J]. Mathematica Aeterna, 2012, 2(3): 203-213.
[14] MAHMOOD K, HAYAT K. Characterizations of hemi-rings by their bipolar-valued fuzzy h-ideals[J]. Information Sciences Letters, 2015, 4(2): 51-59.
[15] JANA C, PAL M, SAEID A B.(∈,∈∨q)-bipolar-valued fuzzy BCK/BCI-algebras[J]. Missouri Journal of Mathematical Sciences, 2017, 29(5): 101-112.
[16] 刘春辉, 李玉毛, 张海燕. 否定非对合剩余格的双极值模糊理想[J]. 山东大学学报(理学版), 2019, 54(5): 88-98. LIU Chunhui, LI Yumao, ZHANG Haiyan. Bipolar fuzzy ideals in negative non-involutive residuated lattices[J]. Journal of Shandong University(Natural Science), 2019, 54(5): 88-98.
[17] 刘春辉, 姜志廷, 秦学成. 否定非对合剩余格的BF-理想[J]. 数学的实践与认识, 2019, 49(13): 245-251. LIU Chunhui, JIANG Zhiting, QIN Xuecheng. BF-ideals in negative non-involutive residuated lattices[J]. Mathematics in Practice and Theory, 2019, 49(13): 245-251.
[1] 刘春辉,张海燕,李玉毛. 否定非对合剩余格的双极值模糊理想格[J]. 《山东大学学报(理学版)》, 2019, 54(9): 29-35.
[2] 刘春辉,李玉毛,张海燕. 否定非对合剩余格的双极值模糊理想[J]. 《山东大学学报(理学版)》, 2019, 54(5): 88-98.
[3] 刘春辉. Heyting代数的扩张模糊滤子[J]. 《山东大学学报(理学版)》, 2019, 54(2): 57-65.
[4] 刘春辉. 可换BR0-代数在一般集合上的蕴涵表示形式[J]. 山东大学学报(理学版), 2018, 53(6): 86-94.
[5] 梁颖,崔艳丽,吴洪博. 基于BL系统的演绎系统集代数的剩余格属性[J]. 山东大学学报(理学版), 2017, 52(11): 65-70.
[6] 刘春辉. BL代数的(,∨(-overq))-模糊滤子格[J]. 山东大学学报(理学版), 2017, 52(10): 104-110.
[7] 乔希民,吴洪博. 区间集上非交换剩余格的〈,(-overQ)〉-fuzzy滤子及其特征刻画[J]. 山东大学学报(理学版), 2016, 51(2): 102-107.
[8] 周建仁, 吴洪博. IMTL逻辑系统的一种新扩张形式[J]. 山东大学学报(理学版), 2015, 50(12): 28-34.
[9] 寇海燕, 吴洪博. MTL代数的Wajsberg形式及其应用[J]. 山东大学学报(理学版), 2015, 50(02): 75-82.
[10] 刘春辉. 正则剩余格的模糊超⊙-理想[J]. 山东大学学报(理学版), 2014, 49(12): 87-94.
[11] 周建仁1,2,吴洪博2*. IMTL逻辑代数的一种新强化形式[J]. 山东大学学报(理学版), 2014, 49(04): 84-89.
[12] 刘春辉1,2. Heyting代数的模糊滤子格[J]. J4, 2013, 48(12): 57-60.
[13] 刘春辉1,2. 正则剩余格的素模糊⊙理想及其拓扑性质[J]. J4, 2013, 48(12): 52-56.
[14] 刘春辉1,2. Fuzzy蕴涵代数的滤子理论刘春辉1,2[J]. J4, 2013, 48(09): 73-77.
[15] 李玲玲, 吴洪博*. BR0-分配性及其推广[J]. J4, 2012, 47(2): 93-97.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!