《山东大学学报(理学版)》 ›› 2021, Vol. 56 ›› Issue (8): 39-44.doi: 10.6040/j.issn.1671-9352.0.2020.421
• • 上一篇
郝宏艳,李愿*
HAO Hong-yan, LI Yuan*
摘要: 主要研究了Hilbert空间H上全体幂等算子关于左星序的性质, 其中左星序(left-star order)A*≤B定义为A*A=A*B且R(A)⊆R(B)。设A和B是幂等算子, 给出了A*≤B的等价条件和算子矩阵形式表示。同时, 当A*≤B时, 讨论了星序的上、下确界A∧B和A∨B的存在性及其表示。
中图分类号:
[1] DJIKIC M S, FONGI G, MAESTRIPIERI A. The minus order and range additivity[J]. Linear Algebra Appl, 2017, 531:234-256. [2] DARZIN M P. Natural structures on semigroups with involution[J]. Bull Amer Math Soc, 1978, 84:139-141. [3] LI Yuan, NIU Jiajia, XU Xiaoming. The minus order for idempotent operators[J/OL]. [2019-12-20]. Filomat. https://arxiv.org/abs/1912.09718. [4] DENG Chunyuan, WANG Shunqin. On some characterizations of the partial orderings for bounded operators[J]. Math Ineq Appl, 2012(3):619-630. [5] DENG Chunyuan, YU Anqi. Some relations of projection and star order in Hilbert space[J]. Linear Algebra Appl, 2015, 474:158-168. [6] HARTWIG R E, DARZIN M P. Lattice properties of the star order for complex matrices[J]. J Math Anal Appl, 1982, 86:539-578. [7] ANTEZANA J, CANO C, MOSCONI I, et al. A note on the star order in Hilbert spaces[J]. Linear and Multilinear Algebra, 2010, 58:1037-1051. [8] XU Xiaoming, DU Hongke, LI Yuan, et al. The supremum of linear operators for the *-order[J]. Linear Algebra Appl, 2010, 433:2198-2207. [9] LI Yuan, GAO Shuhui, XU Xiaoming. The star order for idempotent operators[J/OL]. [2021-02-14]. Linear and Multilinear Algebra. https://doi.org/10.1080/03081087.2021.1887069. [10] DOLINAR G, MAROVT J. Star partial order on B(H)[J]. Linear Algebra Appl, 2011, 434:319-326. [11] MITRA S K. The minus partial order and the shorted matrix[J]. Linear Algebra Appl, 1986, 83:1-27. [12] C(-overL)RULIS J. One-sided star partial orders for bounded linear operators[J]. Operators and Matrices, 2015(9):891-905. [13] BAKSALARY J K, BAKSALARY O M, LIU Xiaoji. Further properties of the star, left-star, rightstar, and minus partial orderings[J]. Linear Algebra Appl, 2003, 375:83-94. |
[1] | 杨源, 张建华. B(H)上中心化子的一个局部特征[J]. 山东大学学报(理学版), 2015, 50(12): 1-4. |
[2] | 陈一鸣, 柯小红, 韩小宁, 孙艳楠, 刘立卿. 小波法求解分数阶微分方程组及其收敛性分析[J]. 山东大学学报(理学版), 2015, 50(02): 67-74. |
[3] | 谢涛,左可正. 关于两个幂等算子组合的Drazin逆的若干探讨[J]. J4, 2013, 48(4): 95-103. |
[4] | 耿万海,陈一鸣,刘玉风,汪晓娟. 应用Haar小波和算子矩阵求定积分的近似值[J]. J4, 2012, 47(4): 84-88. |
[5] | 杜贵春1,2,邵春芳1. 上三角算子矩阵值域的闭性[J]. J4, 2012, 47(4): 42-46. |
[6] | 段樱桃. 两个算子乘积的{1,3,4}逆序律[J]. J4, 2012, 47(4): 53-56. |
[7] | 许俊莲1,2. 算子方程 AXB*-BX*A*=C的解[J]. J4, 2012, 47(4): 47-52. |
[8] | 许俊莲. 几个正交投影函数的特征值函数[J]. J4, 2011, 46(6): 70-74. |
[9] | 方莉1,白维祖2. 保持幂等算子乘积或约当三乘积非零幂等性的映射[J]. J4, 2010, 45(12): 98-105. |
[10] | 李 愿 . 2×2上三角算子矩阵的Weyl定理[J]. J4, 2007, 42(6): 69-73 . |
|