您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

《山东大学学报(理学版)》 ›› 2021, Vol. 56 ›› Issue (9): 21-27,49.doi: 10.6040/j.issn.1671-9352.0.2020.621

•   • 上一篇    下一篇

海水养殖循环系统不同功能区域微生物群落结构比较

郭战胜(),丁一,张海涛,侯旭光*()   

  1. 山东大学海洋学院,山东 威海 264209
  • 收稿日期:2020-11-04 出版日期:2021-09-20 发布日期:2021-09-13
  • 通讯作者: 侯旭光 E-mail:guozhansheng@sdu.edu.cn;houxuguang@sdu.edu.cn
  • 作者简介:郭战胜(1987—),男,博士研究生,研究方向为循环水养殖系统研发. E-mail: guozhansheng@sdu.edu.cn
  • 基金资助:
     ( )

Comparison analysis of microbial community structure in different functional areas of recirculating aquaculture system

Zhan-sheng GUO(),Yi DING,Hai-tao ZHANG,Xu-guang HOU*()   

  1. Marine College, Shandong University, Weihai 264209, Shandong, China
  • Received:2020-11-04 Online:2021-09-20 Published:2021-09-13
  • Contact: Xu-guang HOU E-mail:guozhansheng@sdu.edu.cn;houxuguang@sdu.edu.cn

摘要:

为了探究海水养殖循环系统不同功能区域微生物群落结构特征,深入了解水质理化因子与微生物群落之间的相关性,通过16S rRNA扩增子高通量测序技术对系统不同功能区域水体微生物群落结构进行了分析。结果表明,变形菌门(Proteobacteria)和拟杆菌门(Bacteroidetes)为整个系统绝对优势菌门,不同功能区域优势属组成差异较大,但是弧菌(Vibrio)丰度都在1%以上。脉红螺养殖池和生物滤池水体α多样性最高,鲍鱼养殖池水体和自然海水多样性最低。NMDS分析结果显示生物滤池和养殖池进水口微生物群落结构相似,其他区域微生物群落结构有明显差异。生物滤池到养殖池NH4+和NO2-去除率分别为8.77%和45.12%,NO3-质量浓度在整个系统内都处于较高水平(148.50~200.47mg/L)。环境因子与微生物群落结构没有显著相关性,温度T和NO2-对微生物群落结构的影响相对较大。研究结果为下一步循环水养殖系统设计的完善和日常管理提供了参考。

关键词: 海水养殖循环系统, 功能区域, 高通量测序, 微生物群落

Abstract:

In order to explore the microbial community structure in different functional areas of recirculating aquaculture system, as well as to understand the relationship between environmental factors and the microbial community, microbial community structure in recirculating aquaculture system was analyzed by using high-throughput sequencing with 16S rRNA in this study. The results showed that Proteobacteria and Bacteroidetes were the most dominant phyla in overall system, the compositions of dominant genera were quite different in different areas of system, while the relative abundances of Vibrio in whole system were both exceeding 1%. α-diversity (Shannon, ACE and chao1) of samples collected from biofilter and Rapana venosa pond were highest, and that in abalone pond and natural seawater were lowest. Non-metric multi-dimensional scaling (NMDS) analysis showed the system areas possessed distinctive distances of microbial communities except samples between biofilter and culture pond inlet. The removal rates of ammonia nitrogen and nitrite nitrogen from biofilter to the inlet of culture pond were 8.77% and 45.12%, respectively. The concentrations of nitrate nitrogen maintained a high level in the whole system (148.50~200.47 mg/L). There was no significant correlations between environmental factors and microbial community structure, temperature and nitrite nitrogen had relatively stronger effects on microbial community structure. This study provides a reference for the design improvement and daily management of recirculating aquaculture system in the next step.

Key words: recirculating aquaculture system, functional area, high-throughput sequencing, microbial community

中图分类号: 

  • S969.39

图1

循环系统流程图"

表1

微生物群落的α多样性分析"

样品 有效序列 有效OTU Shannon指数 Chao1指数 ACE指数 测序覆盖率
BI 80149 1089 6.837 1041.619 1057.583 0.997
WI 80167 1029 5.746 1012.321 1021.027 0.997
HWO 80171 515 4.694 491.500 500.137 0.998
RWO 80078 1104 7.144 1197.774 1193.839 0.996
SWO 80087 906 6.771 905.210 898.597 0.997
MF 80005 992 7.079 989.000 996.671 0.997
NW 80130 436 4.533 434.553 427.336 0.998

图2

基于门水平(a)和属水平(b)的循环水养殖系统微生物群落结构组成"

图3

循环水养殖系统微生物群落结构NMDS分析图"

表2

海水循环系统不同功能区域环境因子成分"

采样区域 T/℃ pH ρ(DO)/(mg·L-1) ρ(NH4+)/(mg·L-1) ρ(NO2-)/(mg·L-1) ρ(NO3-)/(mg·L-1)
BI 15.1 8.42 6.92 0.0399 0.082 200.34
WI 15.6 8.43 7.33 0.0364 0.045 151.91
HWO 15.5 8.42 7.22 0.0415 0.083 148.50
RWO 15.4 8.42 7.20 0.0469 0.110 189.94
SWO 15.4 8.43 7.21 0.0371 0.075 156.86
MF 15.5 8.39 7.14 0.0383 0.093 200.47
NW 9.3 8.40 8.04 0.0363 0.032 33.84

图4

环境因子与微生物群落关联CCA分析图"

1 农业部渔业渔政管理局. 中国渔业统计年鉴[M]. 北京: 中国农业出版社, 2019.
Fishery Administration Bureau of Ministry of Agriculture . China fishery statistic yearbook[M]. Beijing: China Agriculture Press, 2019.
2 张文博, 马旭洲. 2000年来中国水产养殖发展趋势和方向[J]. 上海海洋大学学报, 2020, 29 (5): 661- 674.
ZHANG Wenbo , MA Xuzhou . Chinas aquaculture development trends since 2000 and future directions[J]. Journal of Shanghai Ocean University, 2020, 29 (5): 661- 674.
3 SUANTIKA G , SITUMORANG M L , SAPUTRA F I , et al. Metabolite profiling of whiteleg shrimp Litopenaeus vannamei from super-intensive culture in closed aquaculture systems: a recirculating aquaculture system and a hybrid zero water discharge-recirculating aquaculture system[J]. Metabolomics, 2020, 16, 49.
doi: 10.1007/s11306-020-01675-1
4 IGNATZA E H , DUMASD A , BENFEYE T J , et al. Growth performance and nutrient utilization of growth hormone transgenic female triploid Atlantic salmon (Salmo salar) reared at three temperatures in a land-based freshwater recirculating aquaculture system (RAS)[J]. Aquaculture, 2020, 519, 734896.
doi: 10.1016/j.aquaculture.2019.734896
5 辛乃宏, 朋礼全, 于学权, 等. 石斑鱼循环水养殖系统及水源热泵应用研究[J]. 渔业现代化, 2017, 44 (4): 914.
XIN Naihong , PENG Liquan , YU Xuequan , et al. Research on application of recirculating aquaculture system and water source heat pump for grouper[J]. Fishery Modernization, 2017, 44 (4): 914.
6 张刚, 胡洋洋, 韩祥兰, 等. 淡水珍珠蚌循环水养殖模式下分布式水质监控系统设计[J]. 农业工程学报, 2020, 36 (7): 239- 247.
ZHANG Gang , HU Yangyang , HAN Xianglan , et al. Design of distributed water quality monitoring system under circulating water aquaculture mode of freshwater pearl mussels[J]. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36 (7): 239- 247.
7 吴垠, 孙建明, 柴雨, 等. 多层抽屉式循环水幼鲍养殖系统及养殖效果[J]. 农业工程学报, 2012, 28 (13): 185- 190.
WU Yin , SUN Jianming , CHAI Yu , et al. Recirculating aquaculture system with multi-layer drawer culture tanks for juvenile abalone and its effects[J]. Transactions of the Chinese Society of Agricultural Engineering, 2012, 28 (13): 185- 190.
8 张翔, 闫茂仓, 肖国强, 等. 虾-贝-红树林耦合循环水养殖系统中微生物群落分析[J]. 水生生物学报, 2016, 40 (3): 557- 564.
ZHANG Xiang , YAN Maocang , XIAO Guoqiang , et al. Analysis of microbial community structure in mangrove constructed wetland-mariculture coupling system[J]. Acta Hydrobiologica Sinica, 2016, 40 (3): 557- 564.
9 RURANGWA E , VERDEGEM M C J . Microorganisms in recirculating aquaculture systems and their management[J]. Reviews in Aquaculture, 2015, 7, 117- 130.
doi: 10.1111/raq.12057
10 JIANG W W , TIAN X L , LI L , et al. Temporal bacterial community succession during the start-up process of biofilters in a cold-freshwater recirculating aquaculture system[J]. Bioresource Technology, 2019, 287, 121441.
doi: 10.1016/j.biortech.2019.121441
11 LIU B Y , HUAN H L , GU H R , et al. Dynamics of a microbial community during ensiling and upon aerobic exposure in lactic acid bacteria inoculation-treated and untreated barley silages[J]. Bioresource Technology, 2019, 273, 212- 219.
doi: 10.1016/j.biortech.2018.10.041
12 MARTINS P , CLEARY D F , PIRES A C , et a1 . Molecular analysis of bacterial communities and detection of potential pathogens in a recirculating aquaculture system for Scophthalmus maximus and Solea senegalensis[J]. PLoS One, 2013, 8 (11): 995- 998.
13 吴越, 马建忠, 郑伊诺, 等. 石斑鱼循环水养殖系统微生物群落结构[J]. 中国水产科学, 2017, 24 (5): 1045- 1054.
WU Yue , MA Jianzhong , ZHENG Yinuo , et al. Analysis of microbial community structure in recirculating aquaculture system for groupers (Epinephelus)[J]. Journal of Fishery Sciences of China, 2017, 24 (5): 1045- 1054.
14 吴建绍, 朱志煌, 李雷斌, 等. 双斑东方鲀循环水养殖水体细菌群落结构分析[J]. 渔业研究, 2018, 40 (4): 249- 257.
WU Jianshao , ZHU Zhihuang , LI Leibin , et al. Analysis of bacterial community structure in culture water of recirculating aquaculture systems of Fugu bimaculatus[J]. Journal of Fisheries Research, 2018, 40 (4): 249- 257.
15 CHEN Z , CHANG Z Q , ZHANG L , et al. Effects of water recirculation rate on the microbial community and water quality in relation to the growth and survival of white shrimp (Litopenaeus vannamei)[J]. BMC Microbiology, 2019, 19, 192.
16 PAYNE M S , HALL M R , BANNISTER R , et al. Microbial diversity within the water column of a larval rearing system for the ornate rock lobster Panulirus ornatus[J]. Aquaculture, 2006, 258 (1/2/3): 80- 90.
17 罗金飞, 廖永岩, 李书迪, 等. 温度对拟穴青蟹循环水养殖系统微生物群落结构的影响[J]. 中国水产科学, 2020, 27 (4): 393- 405.
LUO Jinfei , LIAO Yongyan , LI Shudi , et al. Influence of temperature on microbial community structure in a Scylla paramamosain recirculating aquaculture system[J]. Journal of Fishery Sciences of China, 2020, 27 (4): 393- 405.
18 ZHANG L L , ORTH K . Virulence determinants for Vibrio parahaemolyticus infection[J]. Current Opinion in Microbiology, 2013, 16 (1): 7077.
19 ZORRIEHZAHRA M J , DELSHAD S T , ADEL M , et al. Probiotics as beneficial microbes in aquaculture: an update on their multiple modes of action: a review[J]. Veterinary Quarterly, 2016, 36 (4): 228- 241.
20 黄秀玉, 荣浩翔, 高月淑, 等. 循环水养殖系统中反硝化技术研究进展[J]. 水处理技术, 2019, 45 (2): 7- 12.
HUANG Xiuyu , RONG Haoxiang , GAO Yueshu , et al. Research progress of denitrification technology in recirculating aquaculture system[J]. Technology of Water Treatment, 2019, 45 (2): 7- 12.
21 姜妍君, 强志民, 董慧峪, 等. 海水循环养殖系统水处理工艺综述[J]. 环境化学, 2013, 32 (3): 410- 418.
JIANG Yanjun , QIANG Zhimin , DONG Huiyu , et al. Water treatment processes in marine recirculating aquaculture systems: a review[J]. Environmental Chemistry, 2013, 32 (3): 410- 418.
[1] 洪丕征,刘世荣,于浩龙,郝建. 模拟氮沉降对红椎人工幼龄林土壤微生物生物量和微生物群落结构的影响[J]. 山东大学学报(理学版), 2016, 51(5): 18-28.
[2] 韩亚飞,伊文慧,王文波,王延平,王华田*. 基于高通量测序技术的连作杨树人工林土壤细菌多样性研究[J]. 山东大学学报(理学版), 2014, 49(05): 1-6.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 石长光 . Faddeev模型中的多孤立子解[J]. J4, 2007, 42(7): 38 -40 .
[2] 董炯,曹小红. 算子立方的Weyl定理及其紧摄动[J]. 山东大学学报(理学版), 2016, 51(8): 15 -21 .
[3] . 银杏叶提取物中总黄酮含量的分析方法研究[J]. J4, 2009, 44(5): 40 -44 .
[4] 刘汝军,曹玉霞,周 平 . 利用小反馈实现离散非线性混沌系统的反控制[J]. J4, 2007, 42(7): 30 -32 .
[5] 许万银. 一类拟线性Neumann问题的多重解[J]. J4, 2009, 44(10): 39 -42 .
[6] 杜瑞颖, 杨勇, 陈晶, 王持恒. 一种基于相似度的高效网络流量识别方案[J]. 山东大学学报(理学版), 2014, 49(09): 109 -114 .
[7] 张凤霞1,李莹1,2,郭文彬1,赵建立1. 分块Hermite阵与斜Hermite阵的最大秩与最小秩[J]. J4, 2010, 45(4): 106 -110 .
[8] 毕晓冬 . 左拟正规带的自由积[J]. J4, 2008, 43(6): 83 -86 .
[9] 凌密然, 米据生, 马丽. 异构形式背景上的不确定推理[J]. 山东大学学报(理学版), 2014, 49(08): 28 -32 .
[10] 张闵敏1,曹丽霞2. 中介公理集合论框架下的粗糙集[J]. J4, 2010, 45(9): 32 -37 .