您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

《山东大学学报(理学版)》 ›› 2021, Vol. 56 ›› Issue (9): 81-86.doi: 10.6040/j.issn.1671-9352.0.2020.673

• • 上一篇    

基于DP算法的变量选择

王秀丽   

  1. 曲阜师范大学统计学院, 山东 曲阜 273165
  • 发布日期:2021-09-13
  • 作者简介:王秀丽(1985— ),女,博士,讲师,研究方向为高维数据分析. E-mail:stat_sci@126.com
  • 基金资助:
    山东省自然科学基金资助项目(ZR2020QA021)

Variable selection based on DP algorithm

WANG Xiu-li   

  1. School of Statistics, Qufu Normal University, Qufu 273165, Shandong, China
  • Published:2021-09-13

摘要: 在DP算法的基础上,提出了新的PDP算法,来实现带有惩罚函数的目标函数中参数估计的计算问题。新算法为基于惩罚函数的变量选择方法在计算上的实现提供了新的选择,同时通过数据模拟分析验证了新算法的有效性。

关键词: 变量选择, 惩罚函数, PDP算法

Abstract: This paper proposes a new algorithm to compute the estimates of parameters in the objective function with the penalty function. This algorithm is given based on the DP algorithm, and provides an alternative approach to work out the minimization of penalized least squares function. Simulation studies are conducted to assess the finite sample performance of the proposed algorithm.

Key words: variable selection, penalty function, Penalized-DP algorithm

中图分类号: 

  • O212
[1] TIBSHIRANI R. Regression shrinkage and selection via the lasso[J]. Journal of the Royal Statistical Society: Series B, 1996, 58(1):267-288.
[2] ZOU H. The adaptive lasso and its oracle properties[J]. Journal of the American Statistical Association, 2006, 101(476):1418-1429.
[3] FAN J, LI R. Variable selection via nonconcave penalized likelihood and its oracle properties[J]. Journal of the American Statistical Association, 2001, 96(456):1348-1360.
[4] ZHANG C H. Nearly unbiased variable selection under minimax concave penalty[J]. The Annals of Statistics, 2010, 38(2):894-942.
[5] EFRON B, HASTIE T, JOHNSTONE I, et al. Least angle regression[J]. The Annals of Statistics, 2004, 32(2):407-451.
[6] HUNTER D R, LI R. Variable selection using MM algorithms[J]. The Annals of Statistics, 2005, 33(4):1617-1642.
[7] ZOU H, LI R. One-step sparse estimates in nonconcave penalized likelihood models[J]. The Annals of Statistics, 2008, 36(4):1509-1533.
[8] BREHENY P, HUANG J. Coordinate descent algorithms for nonconvex penalized regression, with applications to biological feature selection[J]. The Annals of Applied Statistics, 2011, 5(1):232-253.
[9] DE PIERRO A R. A modified expectation maximization algorithm for penalized likelihood estimation in emission tomography[J]. IEEE Transactions on Medical Imaging, 1995, 14(1):132-137.
[10] BECKER M P, YANG I, LANGE K. EM algorithms without missing data[J]. Statistical Methods in Medical Research, 1997, 6(1):38-54.
[11] SCHWARZ G. Estimating the dimension of a model[J]. The Annals of Statistics, 1978, 6(2):461-464.
[12] WANG H, LI R, TSAI C L. Tuning parameter selectors for the smoothly clipped absolute deviation method[J]. Biometrika, 2007, 94(3):553-568.
[13] XIONG S, DAI B, HULING J, et al. Orthogonalizing EM: a design-based least squares algorithm[J]. Technometrics, 2016, 58(3):285-293.
[1] 李双安,陈凤华,赵艳伟. 超记忆梯度法在大规模信号重构问题中的应用[J]. 山东大学学报(理学版), 2017, 52(1): 65-73.
[2] 甘信军, 杨维强. 证据权重方法与信用风险控制[J]. 山东大学学报(理学版), 2014, 49(12): 55-59.
[3] 李锋1,卢一强2. 部分线性模型的LASSO估计及其渐近性[J]. J4, 2012, 47(3): 93-97.
[4] 王树云1,宋云胜2. 线性模型下基于AIC准测的Bayes变量选择[J]. J4, 2010, 45(6): 43-45.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!