《山东大学学报(理学版)》 ›› 2021, Vol. 56 ›› Issue (10): 113-126.doi: 10.6040/j.issn.1671-9352.9.2021.013
步宇翔1*,罗奇1,2**
BU Yuxiang1*, LUO Qi1,2
摘要: 本文利用从头算分子动力学模拟研究了一类普适液体介质(液态甲胺)中溶剂化双电子的结构及动力学行为,揭示了其独特的结构特征及时间演化动力学, 特别是发现了溶剂化双电子具有迷人的自旋交叉动力学特征,是一类双稳态的双极化子。模拟结果表明,液态甲胺中2个电子优先定域于2个独立的溶剂笼,且进行非协同时间演化。单态时具有稳态动力学演化特征,而三态时则表现为电子交换动力学。非常有趣的是单态及三态轨迹均表明此类动态双极化子展现了双稳态,在时间演化上呈现铁磁态与反铁磁态之间频繁的自旋转换。本工作首次详细报道了一类广泛应用液态介质中双稳态溶剂化双电子的动态自旋交叉现象及动力学规律,为探索此类磁性液体的实际应用提供了新的见解。
中图分类号:
[1] WEYL W. Ueber die bildung des ammoniums und einiger ammoniummetalle[J]. Annalen Der Physik Und Chemie, 1864, 199(10):350-367. [2] HART E J, BOAG J W. Absorption spectrum of the hydrated electron in water and in aqueous solutions[J]. Journal of the American Chemical Society, 1962, 84(21):4090-4095. [3] KEENE J P. Absorption spectra in irradiated water and some solutions: optical absorptions in irradiated water[J]. Nature, 1963, 197(4862):47-48. doi:10.1038/197047a0. [4] XIA P, YU N, BLOOMFIELD L A. Experimental and theoretical studies of single excess electrons in sodium chloride cluster anions[J]. Physical Review B: Condensed Matter, 1993, 47(15):10040-10043. [5] LAENEN R, ROTH T, LAUBEREAU A. Novel precursors of solvated electrons in water: evidence for a charge transfer process[J]. Physical Review Letters, 2000, 85(1):50. doi:10.1103/physrevlett.85.50. [6] BRAGG A E. Hydrated electron dynamics: from clusters to bulk[J]. Science, 2004, 306(5696):669-671. [7] HAMMER N I, SHIN J W, HEADRICK J M, et al. How do small water clusters bind an excess electron?[J]. Science, 2004, 306(5696):675-679. [8] PAIK D H, LEE I R, YANG D S, et al. Electrons in finite-sized water cavities: hydration dynamics observed in real time[J]. Science, 2004, 306(5696):672-675. [9] KIM K S, PARK I I, LEE S, et al. The nature of a wet electron[J]. Physical Review Letters, 1996, 76(6):956-959. [10] JORDAN K D, WANG F. Theory of dipole-boundanions[J]. Annual Review of Physical Chemistry, 2003, 54(1):367-396. [11] JORDAN K D. CHEMISTRY: a fresh look at electron hydration[J]. Science, 2004, 306(5696):618-619. [12] BARRIOS R, SKURSKI P, SIMONS J. Mechanism for damage to DNA by low-energy electrons[J]. The Journal of Physical Chemistry B, 2002, 106(33):7991-7994. [13] VERLET J R, BRAGG A E, KAMMRATH A, et al. Comment on “Characterization of excess electrons in water-cluster anions by quantum simulations”[J]. Science, 2005, 310(5755):1769-1769. [14] TURI L. Characterization of excess electrons in water-cluster anions by quantum simulations[J]. Science, 2005, 309(5736):914-917. [15] ZHENG Y, WAGNER J R, SANCHE L. DNA damage induced by low-energy electrons: electron transfer and diffraction[J]. Physical Review Letters, 2006, 96(20):208101. [16] SOMMERFELD T, JORDAN K D. Electron binding motifs of(H2O)n-clusters[J]. Journal of the American Chemical Society, 2006, 128(17):5828-5833. [17] HERBERT J M, HEAD-GORDON M. Charge penetration and the origin of large O—H vibrational red-shifts in hydrated-electron clusters,(H2O)n-[J]. Journal of the American Chemical Society, 2006, 128(42):13932-13939. [18] BOERO M. Excess electron in water at different thermodynamic conditions[J]. The Journal of Physical Chemistry A, 2007, 111(49):12248-12256. [19] WANG Z P, ZHANG L, CHEN X H, et al. Excess electron solvation in an imidazolium-based room-temperature ionic liquid revealed by ab initio molecular dynamics simulations[J]. The Journal of Physical Chemistry B, 2009, 113(24):8222-8226. [20] WANG Z, ZHANG L, CUKIER R I, et al. States and migration of an excess electron in a pyridinium-based, room-temperature ionic liquid: an ab initio molecular dynamics simulation exploration[J]. Physical Chemistry Chemical Physics, 2010, 12(8):1854-1861. [21] MARGULIS C J, ANNAPUREDDY H V R, DE BIASE P M, et al. Dry excess electrons in room-temperature ionic liquids[J]. Journal of the American Chemical Society, 2011, 133(50):20186-20193. [22] LIU J X, CUKIER R I, BU Y X. Bending vibration-governed solvation dynamics of an excess electron in liquid acetonitrile revealed by ab initio molecular dynamics simulation[J]. Journal of Chemical Theory and Computation, 2013, 9(11):4727-4734. [23] WANG Z, LIU J, ZHANG M, et al. Solvation and evolution dynamics of an excess electron in supercritical CO2[J]. Physical Review Letters, 2012, 108(20):207601. [24] TAKAYANAGI T. Theoretical simulations of dynamics of excess electron attachment to acetonitrile clusters[J]. Chemical Physics, 2004, 302(1/2/3):85-93. [25] TAKAHASHI K, SATO T, KATSUMURA Y, et al. Reactions of solvated electrons with imidazolium cations in ionic liquids[J]. Radiation Physics and Chemistry, 2008, 77(10/11/12):1239-1243. [26] MUSAT R M, KONDOH T, YOSHIDA Y, et al. Twin-peaks absorption spectra of excess electron in ionic liquids[J]. Radiation Physics and Chemistry, 2014, 100:32-37. [27] SCHWARTZ B J, ROSSKY P J. Aqueous solvation dynamics with a quantum mechanical solute: computer simulation studies of the photoexcited hydrated electron[J]. The Journal of Chemical Physics, 1994, 101(8):6902-6916. [28] LARSEN R E, GLOVER W J, SCHWARTZ B J. Does the hydrated electron occupy a cavity?[J]. Science, 2010, 329(5987):65-69. [29] XU C H, DURUMERIC A, KASHYAP H K, et al. Dynamics of excess electronic charge in aliphatic ionic liquids containing the bis(trifluoromethylsulfonyl)amide anion[J]. Journal of the American Chemical Society, 2013, 135(46):17528-17536. [30] LIU J, CUKIER R I, BU Y, et al. Glucose-promoted localization dynamics of excess electrons in aqueous glucose solution revealed by ab initio molecular dynamics simulation[J]. Journal of Chemical Theory and Computation, 2014, 10(10):4189-4197. [31] XU C H, MARGULIS C J. Solvation of an excess electron in pyrrolidinium dicyanamide based ionic liquids[J]. The Journal of Physical Chemistry B, 2015, 119(2):532-542. [32] WU X X, GAO L, LIU J X, et al. Excess electron reactivity in amino acid aqueous solution revealed by ab initio molecular dynamics simulation: anion-centered localization and anion-relayed electron transfer dissociation[J]. Physical Chemistry Chemical Physics, 2015, 17(40):26854-26863. [33] XIA P, BLOOMFIELD L. Accommodation of two excess electrons in sodium chloride cluster anions[J]. Physical Review Letters, 1993, 70(12):1779-1782. [34] BARNETT R N, GINIGER R, CHESHNOVSKY O, et al. Dielectron attachment and hydrogen evolution reaction in water clusters[J]. The Journal of Physical Chemistry A, 2011, 115(25):7378-7391. [35] FENG D F, FEUKI K, KEVAN L. Semicontinuum model for the trapped dielectron in polar liquids and solids[J]. The Journal of Chemical Physics, 1973, 58(8):3281-3294. [36] KEVAN L, RENNEKE D R, FRIAUF R J. Optical absorption spectrum of trapped dielectrons in alkaline ice[J]. Solid State Communications, 1968, 6(7):469-471. [37] ZIMBRICK J, KEVAN L. Evidence for trapped dielectrons in ice[J]. Journal of the American Chemical Society, 1967, 89(10):2483-2484. [38] FLWLER W B. Physics of color centers[M]. New York: Academic Press, 1968. [39] KENNEY-WALLACE G, WALKER D C. Concerning the optical absorption band of the hydrated electron[J]. Berichte Der Bunsengesellschaft Für Physikalische Chemie, 1971, 75(7):634-637. [40] FUEKI K. Theory of the trapped dielectron[J]. The Journal of Chemical Physics, 1969, 50(12):5381-5385. [41] LARSEN R E, SCHWARTZ B J. Mixed quantum/classical molecular dynamics simulations of the hydrated dielectron: the role of exchange in condensed-phase structure, dynamics, and spectroscopy[J]. The Journal of Physical Chemistry B, 2004, 108(31):11760-11773. [42] LARSEN R E, SCHWARTZ B J. Nonadiabatic molecular dynamics simulations of correlated electrons in solution: 1. Full configuration interaction(CI)excited-state relaxation dynamics of hydrated dielectrons[J]. The Journal of Physical Chemistry B, 2006, 110(19):9681-9691. [43] LARSEN R E, SCHWARTZ B J. Nonadiabatic molecular dynamics simulations of correlated electrons in solution: 2. A prediction for the observation of hydrated dielectrons with Pump-Probe spectroscopy[J]. The Journal of Physical Chemistry B, 2006, 110(19):9692-9697. [44] LARSEN R E, SCHWARTZ B J. Full configuration interaction computer simulation study of the thermodynamic and kinetic stability of hydrated dielectrons[J]. The Journal of Physical Chemistry B, 2006, 110(2):1006-1014. [45] DENG Z, MARTYNA G J, KLEIN M L. Structure and dynamics of bipolarons in liquid ammonia[J]. Physical Review Letters, 1992, 68(16):2496-2499. [46] KAUKONEN H P, BARNETT R N, LANDMAN U. Dielectrons in water clusters[J]. The Journal of Chemical Physics, 1992, 97(2):1365-1377. [47] ZHANG L, YAN S H, CUKIER R I, et al. Solvation of excess electrons in LiF ionic pair matrix: evidence for a solvated dielectron from ab initio molecular dynamics simulations and calculations[J]. The Journal of Physical Chemistry B, 2008, 112(12):3767-3772. [48] LIU J, WANG Z, ZHANG M, et al. Excess dielectron in an ionic liquid as a dynamic bipolaron[J]. Physical Review Letters, 2013, 110(10):107602. [49] KIM S W, SHIMOYAMA T, HOSONO H. Solvated electrons in high-temperature melts and glasses of the room-temperature stable electride Ca24Al28O64] 4+·4e-[J]. Science, 2011, 333(6038):71-74. [50] CAMBI L, SZEGÖ L. Über die magnetische susceptibilität der komplexen verbindungen[J]. Berichte Der Deutschen Chemischen Gesellschaft(A and B Series), 1931, 64(10):2591-2598. [51] WENTZCOVITCH R M, JUSTO J F, WU Z, et al. Anomalous compressibility of ferropericlase throughout the iron spin cross-over[J]. PNAS, 2009, 106(21):8447-8452. [52] WU Z, JUSTO J F, DA SILVA C R S, et al. Publishers note: anomalous thermodynamic properties in ferropericlase throughout its spin crossoverPhys. Rev. B80, 014409(2009)[J]. Physical Review B, 2009, 80(9):099901. [53] GÜTLICH P, GOODWIN H A. Spin crossover in transition metal compounds III[M]. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. [54] COTTON F A, WILKINSON G, GAUS P L. Basic Inorganic Chemistry[M]. New Jersey: Wiley, 1995. [55] REAL J A, GASPAR A B, MU(~overN)OZ M C. Thermal, pressure and light switchable spin-crossover materials[J]. Dalton Transactions(Cambridge, England), 2005(12):2062-2079. [56] FRISENDA R, HARZMANN G D, CELIS GIL J A, et al. Stretching-induced conductance increase in a spin-crossover molecule[J]. Nano Letters, 2016, 16(8):4733-4737. [57] SCHEIDT W R, REED C A. Spin-state/stereochemical relationships in iron porphyrins: implications for the hemoproteins[J]. Chemical Reviews, 1981, 81(6):543-555. [58] ABABEI R, PICHON C, ROUBEAU O, et al. Rational design of a photomagnetic chain: bridging single-molecule magnets with a spin-crossover complex[J]. Journal of the American Chemical Society, 2013, 135(39):14840-14853. [59] WESTON L, CUI X Y, RINGER S P, et al. Bistable magnetism and potential for voltage-induced spin crossover in dilute magnetic ferroelectrics[J]. Physical Review Letters, 2015, 114(24):247601. [60] AVENDANO C, HILFIGER M G, PROSVIRIN A, et al. Temperature and light induced bistability in a Co3[Os(CN)6] 2 6H2O Prussian blue analog[J]. Journal of the American Chemical Society, 2010, 132(38):13123-13125. [61] HOLMSTRÖM E, STIXRUDE L. Spin crossover in ferropericlase from first-principles molecular dynamics[J]. Physical Review Letters, 2015, 114(11):117202. [62] WANG H Y, GE J Y, HUA C, et al. Photo- and electronically switchable spin-crossover iron(II)metal-organic frameworks based on a tetrathiafulvalene ligand[J]. Angewandte Chemie International Edition, 2017, 56(20):5465-5470. [63] ORMAZA M, ABUFAGER P, VERLHAC B, et al. Controlled spin switching in a metallocene molecular junction[J]. Nature Communications, 2017, 8(1):1974. [64] SHIMIZU Y, TAKAHASHI T, YAMADA S, et al. Symmetry preservation and critical fluctuations in a pseudospin crossover perovskite LaCoO3[J]. Physical Review Letters, 2017, 119(26):267203. [65] LI D F, CLÉRAC R, ROUBEAU O, et al. Magnetic and optical bistability driven by thermally and photoinduced intramolecular electron transfer in a molecular cobalt-iron Prussian blue analogue[J]. Journal of the American Chemical Society, 2008, 130(1):252-258. [66] SEEL A G, SWAN H, BOWRON D T, et al. Electron solvation and the unique liquid structure of a mixed-amine expanded metal: the saturated Li-NH3-MeNH2 system[J]. Angewandte Chemie International Edition, 2017, 56(6):1561-1565. [67] MAEDA K, LODGE M T J, HARMER J, et al. Electron tunneling in lithium-ammonia solutions probed by frequency-dependent electron spin relaxation studies[J]. Journal of the American Chemical Society, 2012, 134(22):9209-9218. [68] HOLTON D M, EDWARDS P P, MCFARLANE W, et al. Multinuclear NMR study of the solvated electron in lithium-methylamine solutions[J]. Journal of the American Chemical Society, 1983, 105(8):2104-2108. [69] STUPAK C M, TUTTLE T R, GOLDEN S. Solvated electron optical absorption spectra in liquid methylamine[J]. The Journal of Physical Chemistry, 1982, 86(3):327. [70] NAKAMURA Y, NIIBE M, SHIMOJI M. NMR study of lithium in liquid ammonia and methylamine[J]. The Journal of Physical Chemistry, 1984, 88(17):3755-3760. [71] HAYAMA S, WASSE J C, SKIPPER N T, et al. Structure of solutions of lithium in methylamine across the metal-nonmetal transition[J]. The Journal of Physical Chemistry B, 2002, 106(1):11-14. [72] HERSHBERGER W D, TURKEVICH J. Absorption of methyl alcohol and methylamine for 1.25-Cm waves[J]. Physical Review, 1947, 71(8):554-554. [73] HUDSON R P, MCLANE C K. Magnetic and thermal properties of chromic methylamine alum below 1K[J]. Physical Review, 1954, 95(4):932. [74] ZHANG L X, SONG Q, ZHANG S B. Exceptionally strong hydrogen bonds affect the surface energy of colloidal nanocrystals: methylamine and water adsorption on PbS[J]. Physical Review Letters, 2010, 104(11):116101. [75] ILYUSHIN V V, JANSEN P, KOZLOV M G, et al. Sensitivity to a possible variation of the proton-to-electron mass ratio of torsion-wagging-rotation transitions in methylamine CH3NH2[J]. Physical Review A, 2012, 85(3):032505. [76] EDWARDS P P, BUNTAINE J R, SIENKO M J. Electron- and nuclear-spin-lattice relaxation and the metal-nonmetal transition in lithium-methylamine solutions[J]. Physical Review B, 1979, 19(11):5835. [77] DE KLERK D, HUDSON R P. Adiabatic demagnetization of chromium methylamine alum[J]. Physical Review, 1953, 91(2):278. [78] ZHOU Z M, WANG Z W, ZHOU Y Y, et al. Methylamine-gas-induced defect-healing behavior of CH3NH3PbI3 thin films for perovskite solar cells[J]. Angewandte Chemie, 2015, 127(33):9841-9845. [79] NIESNER D, ZHU H, MIYATA K, et al. Persistent energetic electrons in methylammonium lead iodide perovskite thin films[J]. Journal of the American Chemical Society, 2016, 138(48):15717-15726. [80] HARUYAMA J, SODEYAMA K, HAN L, et al. First-principles study of ion diffusion in perovskite solar cell sensitizers[J]. Journal of the American Chemical Society, 2015, 137(32):10048-10051. [81] YAFFE O, GUO Y, TAN L Z, et al. Local polar fluctuations in lead halide perovskite crystals[J]. Physical Review Letters, 2017, 118(13):136001. [82] NIESNER D, WILHELM M, LEVCHUK I, et al. Giant rashba splitting in CH3NH3PbBr3 organic-inorganic perovskite[J]. Physical Review Letters, 2016, 117(12):126401. [83] BOERO M, PARRINELLO M, TERAKURA K, et al. First-principles molecular-dynamics simulations of a hydrated electron in normal and supercritical water[J]. Physical Review Letters, 2003, 90(22):226403. [84] MUNDY C J, HUTTER J, PARRINELLO M. Microsolvation and chemical reactivity of sodium and water clusters[J]. Journal of the American Chemical Society, 2000, 122(19):4837-4838. [85] GOEDECKER S, TETER M, HUTTER J. Separable dual-space Gaussian pseudopotentials[J]. Physical Review B: Condensed Matter, 1996, 54(3):1703-1710. [86] CWIKLIK L, BUCK U, KULIG W, et al. A sodium atom in a large water cluster: electron delocalization and infrared spectra[J]. The Journal of Chemical Physics, 2008, 128(15):154306. [87] RAJAGOPAL G, BARNETT R N, LANDMAN U. Metallization of ionic clusters[J]. Physical Review Letters, 1991, 67(6):727. [88] MARSALEK O, UHLIG F, VANDEVONDELE J, et al. Structure, dynamics, and reactivity of hydrated electrons by ab initio molecular dynamics[J]. Accounts of Chemical Research, 2012, 45(1):23-32. [89] YAMAGUCHI K, FUKUI H, FUENO T. Molecular orbital(MO)theory for magnetically interacting organic compounds. ab-initio MO calculations of the effective exchange integrals for cyclophane-type carbene dimers[J]. Chemistry Letters, 1986, 15(4):625-628. |
No related articles found! |
|