您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

《山东大学学报(理学版)》 ›› 2021, Vol. 56 ›› Issue (11): 83-86.doi: 10.6040/j.issn.1671-9352.0.2020.198

• • 上一篇    

K4-子式图的2-距离和可区别边染色

强会英,姚丽*   

  1. 兰州交通大学数理学院, 甘肃 兰州 730070
  • 发布日期:2021-11-15
  • 作者简介:强会英(1968— ),女,硕士,教授,研究方向为图论及其应用. E-mail:qhy2005ww@126.com*通信作者简介:姚丽(1995— ),女,硕士,研究方向为图论及其应用. E-mail:YaoL08@163.com
  • 基金资助:
    国家自然科学基金资助项目(61962035)

2-distance sum distinguishing edge coloring of K4-minor-free graphs

QIANG Hui-ying, YAO Li*   

  1. School of Mathematics and Physics, Lanzhou Jiaotong University, Lanzhou 730070, Gansu, China
  • Published:2021-11-15

摘要: 图G的一个正常边染色φ若满足:∠u,v∈V(G),且dG(u,v)≤2都有f(u)≠f(v),其中f(u)=∑uw∈E(G)φ(uw),则称φ为图G的2-距离和可区别边染色。运用反证法,结合构造染色函数法,研究了无K4-子式图的2-距离和可区别边染色,确定了无K4-子式图的2-距离和可区别边色数的一个上界。

关键词: 2-距离和可区别边染色, 2-距离和可区别边色数, 无K4-子式图

Abstract: Let φ be a proper edge coloring of graph G, for any u,v∈V(G), if dG(u,v)≤2 such that f(u)≠f(v) where f(u)=∑uw∈E(G)φ(uw), then φ is the 2-distance sum distinguishing edge coloring of graph G. The 2-distance sum distinguishing edge coloring of K4-minor-free graphs are studied by using the methods of contradiction and constructing coloring function, and a upper bound of the 2-distance sum distinguishing edge chromatic number of K4-minor-free graphs is obtained.

Key words: 2-distance sum distinguishing edge coloring, 2-distance sum distinguishing edge chromatic, K4-minor-free graphs

中图分类号: 

  • O157.5
[1] ZHANG Z F, LIU L Z, WANG J F. Adjacent strong edge coloring of graphs[J]. Applied Mathematics Letters, 2002, 15(5):623-626.
[2] 王维凡, 王平. 没有K4-图子式的图的邻点可区别全染色[J]. 中国科学(A辑: 数学), 2009, 39(12):1462-1472. WANG Weifan, WANG Ping. Neighbor vertex distinguishing total coloring of graphs[J]. Science in China(Series A: Mathematics), 2009, 39(12):1462-1472.
[3] 史小艺,张宁,万慧敏. K4-minor-free图的邻点可区别全染色[J]. 五邑大学学报,2012,26(4):9-13. SHI Xiaoyi, ZHANG Ning, WAN Huimin. K4-minor-free neighbor vertex distinguishing total coloring of graphs[J]. Journal of Wuyi University(Natural Science Edition), 2012, 26(4):9-13.
[4] WANG W F, WANG Y Q. Adjacent vertex-distinguishing edge colorings of K4-minor free graphs[J]. Applied Mathematics Letters, 2011, 24(12):2034-2037.
[5] FLANDRIN E, MARCZYK A, PRZYBYŁO J, et al. Neighbor sum distinguishing index[J]. Graphs and Combinatorics, 2013, 29(5):1329-1336.
[6] WANG G H, YAN G Y. An improved upper bound for the neighbor sum distinguishing index of graphs[J]. Discrete Applied Mathematics, 2014, 175:126-128.
[7] DONG A J, WANG G H, ZHANG J H. Neighbor sum distinguishing edge colorings of graphs with bounded maximum average degree[J]. Discrete Applied Mathematics, 2014, 166: 84-90.
[8] DONG A J, WANG G H. Neighbor sum distinguishing total colorings of graphs with bounded maximum average degree[J]. Acta Mathematica Sinica, English Series, 2014, 30(4):703-709.
[9] LI H L, LIU B Q, WANG G H. Neighbor sum distinguishing total colorings of K4-minor free graphs[J]. Frontiers of Mathematics in China, 2013, 8(6):1351-1366.
[10] ZHANG J H, DING L H, WANG G H, et al. Neighbor sum distinguishing index of K4-minor free graphs[J]. Graphs and Combinatorics, 2016, 32(4):1621-1633.
[1] 解承玲, 马海成. 两个点并路的匹配等价图类[J]. 《山东大学学报(理学版)》, 2021, 56(1): 29-34.
[2] 李晶晶,边红,于海征. 亚苯基链的修正互惠度距离指标[J]. 《山东大学学报(理学版)》, 2020, 55(10): 71-76.
[3] 魏宗田,方慧,李银奎. 基于网络选址的设施系统可靠性[J]. 《山东大学学报(理学版)》, 2020, 55(10): 77-82.
[4] 刘佳,孙磊. 不含4-圈或弦6-圈的平面图是(3,0,0)-可染的[J]. 《山东大学学报(理学版)》, 2018, 53(12): 31-40.
[5] 包丽娅,陈祥恩,王治文. 完全二部图K10,n(10≤n≤90)的点可区别E-全染色[J]. 《山东大学学报(理学版)》, 2018, 53(12): 23-30.
[6] 张友,黄丽娜,李沐春. 一类六角系统的点可区别边染色[J]. 《山东大学学报(理学版)》, 2018, 53(12): 41-47.
[7] 陈洪玲,王慧娟,高红伟. 可嵌入到欧拉示性数非负的曲面图的线性荫度[J]. 《山东大学学报(理学版)》, 2018, 53(12): 17-22.
[8] 李美莲,邓青英. 平图的transition多项式的Maple计算[J]. 山东大学学报(理学版), 2018, 53(10): 27-34.
[9] 刘小花,马海成. Q形图的匹配能序及Hosoya指标排序[J]. 山东大学学报(理学版), 2018, 53(8): 61-65.
[10] 寇艳芳,陈祥恩,王治文. K1,3,p K1,4,p的点可区别的IE-全染色及一般全染色[J]. 山东大学学报(理学版), 2018, 53(8): 53-60.
[11] 陈宏宇,张丽. 4-圈不共点的平面图的线性2-荫度[J]. 山东大学学报(理学版), 2017, 52(12): 36-41.
[12] 何玉萍,王治文,陈祥恩. mC8的点可区别全染色[J]. 山东大学学报(理学版), 2017, 52(10): 24-30.
[13] 李亭亭,劳会学. 一类混合型数论函数的均值估计[J]. 山东大学学报(理学版), 2017, 52(8): 70-74.
[14] 王晓丽,王慧娟,刘彬. 最大度为7的平面图全染色[J]. 山东大学学报(理学版), 2017, 52(8): 100-106.
[15] 陈祥恩,苗婷婷,王治文. 两条路的联图的点可区别I-全染色[J]. 山东大学学报(理学版), 2017, 52(4): 30-33.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!