《山东大学学报(理学版)》 ›› 2021, Vol. 56 ›› Issue (12): 84-93.doi: 10.6040/j.issn.1671-9352.0.2021.065
• • 上一篇
张宪友,李东喜Symbolj@@
ZHANG Xian-you, LI Dong-xi*
摘要: 针对超高维数据,提出一种基于spike-and-slab先验分布的超高维线性回归模型的贝叶斯变量选择方法。该方法继承了弹性网方法和EM算法的优点,以较快的收敛速度来获得稀疏的预测模型。特别地,针对系数的spike-and-slab先验分布设置上,该方法允许系数从不同坐标借力、自动适应已知数据的稀疏信息以及进行多重调整。通过与常用方法的比较,证明了该方法的准确性和有效性。
中图分类号:
[1] BÜHLMANN P, DRINEAS P, KANE M, et al. Handbook of big data[M]. New York: CRC Press, 2016. [2] LEE K E, SHA N, DOUGHERTY E R, et al. Gene selection: a Bayesian variable selection approach[J]. Bioinformatics, 2003, 19(1):90-97. [3] TIBSHIRANI R. Regression shrinkage and selection via the Lasso[J]. Journal of the Royal Statistical Society: Series B, 1996, 58(1):267-288. [4] FAN Jianqing, LI Runze. Variable selection via nonconcave penalized likelihood and its Oracle properties[J]. Journal of the American Statistical Association, 2001, 96(456):1348-1360. [5] ZOU H, HASTIE T. Regularization and variable selection via the elastic net[J]. Journal of the Royal Statistical Society: Series B, 2005, 67(2):301-320. [6] ZOU Hui. The adaptive Lasso and its oracle properties[J]. Journal of the American Statistical Association, 2006, 101(476):1418-1429. [7] 曾津,周建军.高维数据变量选择方法综述[J].数理统计与管理,2017,36(4):678-692. ZENG Jin, ZHOU Jianjun. A review of variable selection methods for high dimensional data[J]. Journal of Applied Statistics and Management, 2017, 36(4):678-692. [8] 王小燕,谢邦昌,马双鸽,等.高维数据下群组变量选择的惩罚方法综述[J].数理统计与管理, 2015, 34(6):978-988. WANG Xiaoyan, XIE Bangchang, MA Shuangge, et al. Summary of punishment methods for group variable selection under high dimensional data[J]. Journal of Applied Statistics and Management, 2015, 34(6):978-988. [9] DONOHO D L, HUO X. Uncertainty principles and ideal atomic decomposition[J]. IEEE Transactions on Information Theory, 2001, 47(7):2845-2862. [10] WANG H, LI G, TSAI C L. Regression coefficient and autoregressive order shrinkage and selection via the Lasso[J]. Journal of the Royal Statistical Society: Series B, 2007, 69(1):63-78. [11] PARK T, CASELLA G. The Bayesian Lasso[J]. Journal of the American Statistical Association, 2008, 103(482):681-686. [12] ALHAMZAWI R, YU K, BENOIT D F. Bayesian adaptive Lasso quantile regression[J]. Statistical Modelling, 2012, 12(3):279-297. [13] HUANG Anhui, XU Shizhong, CAI Xiaodong. Empirical Bayesian elastic net for multiple quantitative trait locus mapping[J]. Heredity, 2015, 114(1):107-115. [14] FISHER C K, MEHTA P. Bayesian feature selection for high-dimensional linear regression via the ising approximation with applications to genomics[J]. Bioinformatics, 2015, 31(11):1754-1761. [15] GEORGE E I, MCCULLOCH R E. Variable selection via Gibbs sampling[J]. Journal of the American Statistical Association, 1993, 88(423):881-889. [16] ROCKOVA V, GEORGE E I. The spike-and-slab Lasso[J]. Journal of the American Statistical Association, 2018, 113(521):431-444. [17] UEDA N, NAKANO R. Deterministic annealing EM algorithm[J]. Neural Networks, 1998, 11(2):271-282. [18] JOHNSON R W. Fitting percentage of body fat to simple body measurements[J]. Journal of Statistics Education, 1996, 4(1):265-266. [19] LENG C, TRAN M N, NOTT D. Bayesian adaptive Lasso[J]. Annals of the Institute of Statistical Mathematics, 2014, 66(2):221-244. |
[1] | 王秀丽. 基于DP算法的变量选择[J]. 《山东大学学报(理学版)》, 2021, 56(9): 81-86. |
[2] | 甘信军, 杨维强. 证据权重方法与信用风险控制[J]. 山东大学学报(理学版), 2014, 49(12): 55-59. |
[3] | 李锋1,卢一强2. 部分线性模型的LASSO估计及其渐近性[J]. J4, 2012, 47(3): 93-97. |
[4] | 王树云1,宋云胜2. 线性模型下基于AIC准测的Bayes变量选择[J]. J4, 2010, 45(6): 43-45. |
|