《山东大学学报(理学版)》 ›› 2022, Vol. 57 ›› Issue (1): 50-55.doi: 10.6040/j.issn.1671-9352.0.2021.259
• • 上一篇
张蓓蓓,许瑶,周游,凌智*
ZHANG Bei-bei, XU Yao, ZHOU You, LING Zhi*
摘要: 借助带自由边界的反应扩散方程,建立具有Allee效应的种群入侵数学模型,描述入侵种群动态过程,探究该数学模型全局解的存在惟一性,同时对解的长时间性质进行研究,得到了入侵种群在新环境中扩张和灭绝的相应条件,揭示了种群因初始生存区域小或自身扩张能力差而导致灭绝的可能性,并利用MATLAB软件对所得结论进行了数值验证,为生态保护和有害种群入侵的防控提供了理论参考。
中图分类号:
[1] DIA B M, DIAGNE M L, GOUDIABY M S, et al. Optimal control of invasive species with economic benefits: application to the Typha proliferation[J]. Natural Resource Modeling, 2020, 33(2):1-23. [2] 石磊, 刘华, 魏玉梅, 等. 具有Allee效应的毒杂草入侵扩散模型及空间分布模拟[J]. 武汉大学学报(理学版), 2017, 63(6):523-532. SHI Lei, LIU Hua, WEI Yumei, et al. The space distribution simulation of poisonous weeds invasion model with Allee effect[J]. Journal of Wuhan University(Natural Science), 2017, 63(6):523-532. [3] GIRARDIN L, LAM K Y. Invasion of open space by two competitors: spreading properties of monostable two-species competition diffusion systems[J]. Proceedings of the London Mathematical Society, 2019, 119(5):1279-1335. [4] BOUKAL D S. Single-species models of the Allee effect: extinction boundaries, sex ratios and mate encounters[J]. Theoretical Biology, 2002, 218(3):375-394. [5] 付晓阅, 张玉娟,刘超,等. 具有Allee效应的食饵-捕食者模型的稳定性分析[J]. 生物数学学报, 2012, 27(4):639-644. FU Xiaoyue, ZHANG Yujuan, LIU Chao, et al. The stability of predator-prey systems subject to the Allee effects[J]. Journal of Biomathematics, 2012, 27(4):639-644. [6] CHEN Xinfu, FRIEDMAN A. A free boundary problem arising in a model of wound healing[J]. Society for Industrial and Applied Mathematics, 2000, 32(4):778-800. [7] DU Yihong, LIN Zhigui. Spreading-vanishing dichotomy in the diffusive logistic model with a free boundary[J]. Society for Industrial and Applied Mathematics, 2010, 42(1):377-405. [8] RUBINSTEIN L I. The stefan problem[M] //Translations of Mathematical Monographs, Vol. 27. Providence:American Mathematical Society, 1971. [9] PROTTER M H, WEINBERGER H F. Maximum principles in differential equations[M]. New York: Springer-Verlag, 1984. [10] BRUNOVSKY P, CHOW S N. Generic properties of stationary state solutions of reaction-diffusion equations[J]. Journal of Differential Equations, 1984, 53(1):1-23. [11] HALE J K, MASSATT P. Asymptotic behavior of gradient-like systems[M] //Dynamical Systems II. New York: Academic Press, 1982: 85-101. [12] SMOLLER J. Shock waves and reaction-diffusion equations[M]. 2nd ed. New York: Springer-Verlag, 1994. [13] SMOLLER J, WASSERMAN A. Global bifurcation of steady-state solutions[J]. Journal of Differential Equations, 1981, 39(2):269-290. [14] KANEKO Y, YAMADA Y. A free boundary problem for a reaction-diffusion equation appearing in ecology[J]. Advances in Mathematical Sciences and Application, 2011, 21(2):467-492. |
[1] | 刘华,叶勇,魏玉梅,杨鹏,马明,冶建华,马娅磊. 一类离散宿主-寄生物模型动态研究[J]. 山东大学学报(理学版), 2018, 53(7): 30-38. |
[2] | 张瑞玲, 王万雄, 秦丽娟. 具有强Allee效应的2-物种的囚徒困境博弈[J]. 山东大学学报(理学版), 2015, 50(11): 98-103. |
[3] | 李海侠. 带有保护区域的加法Allee效应捕食-食饵模型的共存解[J]. 山东大学学报(理学版), 2015, 50(09): 88-94. |
[4] | 杨文彬, 李艳玲. 一类具有非单调生长率的捕食-食饵系统的动力学[J]. 山东大学学报(理学版), 2015, 50(03): 80-87. |
[5] | 伍代勇, 张海. 具有Allee效应和时滞的单种群离散模型的稳定性和分支[J]. 山东大学学报(理学版), 2014, 49(07): 88-94. |
[6] | 张翔,黄淑祥. 分数阶反应扩散方程解的存在性与惟一性的单调迭代方法[J]. J4, 2011, 46(2): 9-14. |
|