您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

《山东大学学报(理学版)》 ›› 2022, Vol. 57 ›› Issue (2): 61-66.doi: 10.6040/j.issn.1671-9352.0.2021.408

• • 上一篇    

半适当半群上Rees矩阵半群的(~)-好同余

崔倩,宫春梅*,王惠   

  1. 西安建筑科技大学理学院, 陕西 西安710055
  • 发布日期:2022-01-07
  • 作者简介:崔倩(1997— ),女,硕士研究生,研究方向为半群代数理论. E-mail:qiancui163@163.com*通信作者简介:宫春梅(1981— ),女,博士,副教授,研究方向为半群代数理论. E-mail:meigongchu@163.com
  • 基金资助:
    国家自然科学基金青年基金资助项目(12001418);陕西省教育厅基金资助项目(18JK0442)

(~)-Good congruences on Rees matrix semigroups over semiadequate semigroups

CUI Qian, GONG Chun-mei*, WANG Hui   

  1. School of Science, Xian University of Architecture and Technology, Xian 710055, Shaanxi, China
  • Published:2022-01-07

摘要: 研究了满足同余条件的半适当半群上Rees矩阵半群的(~)-好同余。首先给出了这类半群上好同余的一些性质,然后利用(~)-好同余对刻画了此类半群的(~)-好同余。

关键词: 好同余, 好同余对, 半适当半群, Rees矩阵半群

Abstract: The(~)-good congruences of Rees matrix semigroups over semiadequate semigroups with congruence condition are studied. Firstly, some properties of Rees matrix semigroups are given, and then, the(~)-good congruence of such semigroups are characterized by means of(~)-good congruence pairs.

Key words: good congruences, good congruence pairs, semiadequate semigroups, Rees matrix semigroups

中图分类号: 

  • O152.7
[1] FOUNTAIN J. Abundant semigroups[J]. Proceedings of the London Mathematical Society, 1982, 44(1):103-129.
[2] LAWSON M V. Rees matrix semigroups[J]. Proceedings of the Edinburgh Mathematical Society, 1990, 33(1):23-37.
[3] GALBIATI J L, VERONESI M L. Congruences on semigroups which are perfect rectangular bands of inverse semigroups[J]. Semigroup Forum, 1986, 33(1):309-330.
[4] GUO Xiaojiang, WANG Liming. Idempotent-connected abundant semigroups which are disjoint unions of quasi-ideal adequate transversalis [J]. Communications in Algebra, 2002, 30(4):1779-1800.
[5] 李春华,郭小江,刘二根.适当半群完备矩形带上的好同余[J]. 数学进展,2009, 38(4):465-476. LI Chunhua, GUO Xiaojiang, LIU Ergen. Good congruences on perfect rectangular bands of adequate semigroups[J]. Advances in Mathematics(China), 2009, 38(4):465-476.
[6] HOWIE J M. An introduction to semigroup theory [M]. London: Academic Press, 1976.
[7] 宫春梅. G-广义完全正则半群的若干研究[D]. 重庆:西南大学, 2011. GONG Chunmei. Some studies on G-generalized completely regular semigroups[D]. Chongqing: Southwest University, 2011.
[8] YAO Huiling, CHEN Yizhi, LI Yonghua. IC quasi-semiadequate semigroups satisfying the congruence condition[J]. Pure and Applied Mathematics, 2010, 21(1):79-98.
[1] 宫春梅,王惠,吴丹丹. 超富足半群上(*)-好同余研究[J]. 《山东大学学报(理学版)》, 2020, 55(8): 98-101.
[2] 宫春梅,高雯,袁莹. 弱型σ半群的结构[J]. 《山东大学学报(理学版)》, 2020, 55(8): 87-91.
[3] 宫春梅,张俊梅. 正则纯正幂么半群并半群上的(~)-好同余[J]. 《山东大学学报(理学版)》, 2020, 55(4): 6-12.
[4] 吴丹丹,宫春梅. 正规纯正幂幺半群并半群上的(~)-好同余[J]. 《山东大学学报(理学版)》, 2019, 54(4): 45-53.
[5] 宫春梅,冯丽霞,任学明. 完全J *,~-单半群上的(*,~)-好同余[J]. 山东大学学报(理学版), 2018, 53(6): 11-16.
[6] 孔祥军,王蓓. 关于可乘拟恰当断面的好同余[J]. 《山东大学学报(理学版)》, 2018, 53(12): 1-3.
[7] 李春华 . 型A半群上的fuzzy好同余[J]. J4, 2008, 43(2): 40-43 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!