您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

《山东大学学报(理学版)》 ›› 2020, Vol. 55 ›› Issue (8): 87-91.doi: 10.6040/j.issn.1671-9352.0.2019.240

• • 上一篇    

弱型σ半群的结构

宫春梅,高雯,袁莹   

  1. 西安建筑科技大学理学院, 陕西 西安 710055
  • 发布日期:2020-07-14
  • 作者简介:宫春梅(1981— ),女,博士,副教授,研究方向为半群代数理论. E-mail:meigongchu@163.com
  • 基金资助:
    西安建筑科技大学科技基金项目(ZR18033;ZR18035)

Structure of weakly type σ semigroups

GONG Chun-mei, GAO Wen, YUAN Ying   

  1. School of Science, Xian University of Architecture and Technology, Xian 710055, Shaanxi, China
  • Published:2020-07-14

摘要: 定义了弱型σ半群,建立了弱型σ半群的拟织积结构,证明了半群S是一个弱型σ半群当且仅当S是一个半适当半群T和一个左正则带I的拟织积

关键词: 弱型σ半群, 半适当半群, 左正则带, 拟织积

Abstract: The definition of weakly type σ semigroups is given and the quasispinded product structure of weakly type σ semigroups is established. It is proved that a semigroup S is a weakly typeσ semigroup if and only ifS is a quasispinded product of a semiadequate semigroup T and a left regular band I.

Key words: weakly type σ semigroups, semiadequate semigroups, left regular bands, quasi-spinded product

中图分类号: 

  • O152.7
[1] PASTIJN F. A representation of a semigroup by a semigroup of matrices over a group with zero[J]. Semigroup Forum, 1975, 10:238-249.
[2] FOUNTAIN J B. Abundant semigroups[J]. Proc London Math Soc, 1982, 44(3):103-129.
[3] LAWSON M V. Rees matrix semigroups[J]. Proc Edinburgh Math Soc, 1990, 33:23-37.
[4] 朱聘瑜, 郭聿琦, 岑嘉评. 左Clifford半群的特征与结构[J]. 中国科学(A辑), 1991, 6:582-590. ZHU Pinyu, GUO Yuqi, SHUM Kar Ping. Characteristics and structure of left Clifford semigroups[J]. Science in China(Series A), 1991, 6:582-590.
[5] 任学明, 岑嘉评. L *-逆半群的结构[J]. 中国科学(A辑), 2006, 36(7):745-756. REN Xueming, SHUM Kar Ping. The structure of L *-inverse semigroups[J]. Science in China(Series A), 2006, 36(7):745-756.
[6] YUAN Ying, REN Xueming. The structure of( ~)/L -inverse semigroup[J]. Communications in Algebra, 2018, 46(2):480-493.
[7] GUO Xiaojiang. On the structure of type σ semigroups[J]. Journal of Lanzhou University, 1996, 32:4-9.
[8] LAWSON M V. Semigroups and ordered categories: I. the reduced case[J]. J Algebra, 1991, 141:422-462.
[9] LAWSON M V. The natural partial order on an abundant semigroup[J]. Proc Edinburgh Math Soc, 1987, 30(2):169-186.
[10] YAO Huiling, CHEN Yizhi, LI Yonghua. IC quasi-semiadequate semigroups satisfying the congruence condition[J]. Pure Mathematics and Applications, 2010, 21(1):79-98.
[1] 张晓敏. 超R*-幂单半群的圈积结构[J]. J4, 2009, 44(9): 66-69.
[2] 张晓敏 . 左C-wrpp半群的圈积结构[J]. J4, 2008, 43(6): 61-63 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!