《山东大学学报(理学版)》 ›› 2022, Vol. 57 ›› Issue (9): 46-54.doi: 10.6040/j.issn.1671-9352.0.2020.584
郭精军,汪育兵,白亚楠*
GUO Jing-jun, WANG Yu-bing, BAI Ya-nan*
摘要: 为了刻画标的资产呈现出的“波动率微笑”和“长相依”等特性,基于分形市场理论用标准布朗运动和分数布朗运动(H∈(3/4,1))的线性组合代替布朗运动,构建了混合分形Heston-CIR模型来描述标的资产价格。其次,讨论了该模型下随机微分方程的解的存在唯一性,并研究了利率方程的Euler格式离散化的强收敛性。最后,用最小二乘Monte Carlo算法对美式看跌期权进行数值模拟验证模型的有效性。
中图分类号:
[1] BLACK F, SCHOLES M. The pricing of options and corporate liabilities[J]. Journal of Political Economy, 1973, 81(3):637-654. [2] FALLAH S, NAJAFI A R, MEHRDOUST F. A fractional version of the Cox-Ingersoll-Ross interest rate model and pricing double barrier option with Hurst index[J]. Communication in Statistics Theory and Methods, 2019(48):1-16. [3] ROGERS L C G. Arbitrage with fractional Brownian motion[J]. Mathematical Finance, 1997, 7(1):95-105. [4] CHERIDITO P. Mixed fractional Brownian motion[J]. Bernoulli Society for Mathematical Statistics and Probability, 2001, 7(6):913-934. [5] MEHRDOUST F, NAJAFI A R, FALLAH S, et al. Mixed fractional Heston model and the pricing of American options[J]. Journal of Computational and Applied Mathematics, 2018(330):141-154. [6] ZHANG Weiguo, LI Zhe, LIU Yongjun. Analytical pricing of geometric Asian power options on an underlying driven by a mixed fractional Brownian motion[J]. Statistical Mechanics and its Applications, 2018(490):402-418. [7] 郭精军, 程志勇. 混合高斯模型下带红利的永久美式期权定价[J]. 应用数学, 2018, 31(2):250-256. GUO Jingjun, CHENG Zhiyong. Peppetual American pricing option in the mixed Gaussian model with dividend[J]. Mathematica Applicata, 2018, 31(2):250-256. [8] HESTON S L. A closed-form solution for options with stochastic volatility with applications to bond and currency option[J]. Review of Financial Studies, 1993, 6(2):327-343. [9] SAMIMI O, MEHRDOUST F. Pricing multi-asset American option under Heston stochastic volatility model[J]. International Journal of Financial Engineering, 2018, 3(5):1-16. [10] MEHRDOUST F, BABAEI S, FALLAH S. Efficient Monte Carlo option pricing under CEV model[J]. Communications in Statistics Simulation and Computation, 2015, 46(3):2254-2266. [11] AHLIP R, PARK L A F, PRODAN A. Pricing currency options in the Heston/CIR double exponential jump-diffusion model[J]. International Journal of Financial Engineering, 2017, 4(1):1-27. [12] SAMIMI O, MARDANI Z, SHARAFPOUR S, et al. LSM algorithm for pricing American option under Heston-Hull-Whites stochastic volatility model[J]. Computational Economics, 2017(50):173-187. [13] LONGSTAF F A, SCHWARTZ E S. Valuing American options by simulation:a simple least-squares approach[J]. Review of Financial Studies, 2001, 14(1):113-147. |
[1] | 宋春燕,李世龙. 带跳的Vasicek利率模型下的寿险净保费责任准备金[J]. 《山东大学学报(理学版)》, 2020, 55(9): 81-88. |
[2] | 安起光,王厚杰 . 基于机会约束的均值—VaR投资组合模型再研究[J]. J4, 2006, 41(2): 94-100 . |
[3] | 彭波,郭精军. 在跳环境和混合高斯过程下的资产定价及模拟[J]. 《山东大学学报(理学版)》, 2020, 55(5): 105-113. |
[4] | 安翔,郭精军. 混合次分数跳扩散模型下回望期权的定价及模拟[J]. 《山东大学学报(理学版)》, 2022, 57(4): 100-110. |
|