《山东大学学报(理学版)》 ›› 2020, Vol. 55 ›› Issue (5): 105-113.doi: 10.6040/j.issn.1671-9352.0.2019.666
• • 上一篇
彭波,郭精军*
PENG Bo, GUO Jing-jun*
摘要: 建立了基于跳环境和混合次分数布朗运动下的欧式期权定价模型。首先,利用Delta对冲原理,获得了欧式期权所满足的随机偏微分方程。其次,使用拟条件期望分别得到欧式看涨、看跌期权定价公式和看涨看跌平价公式。然后,通过希腊字母Δ、 Δ、 ρ、Θ、Γ、ν和关于Hurst指数H的偏导公式量化了资产风险。最后,数值模拟表明:定价参数中的Hurst指数H和跳跃强度λ对期权价值有显著影响。
中图分类号:
[1] BLACK F, SCHOLES M. The pricing of options and corporate liabilities[J]. Journal of Political Economy, 1973, 81(3):637-654. [2] CHERIDITO P. Mixed fractional Brownian motion[J]. Bernoulli, 2001, 7(6):913-934. [3] SUN L. Pricing currency options in the mixed fractional Brownian motion[J]. Physica A: Statistical Mechanics & its Applications, 2013, 392(16):3441-3458. [4] SHOKROLLAHI F, KıLıçMAN A, MAGDZIARZ M. Pricing european options and currency options by time changed mixed fractional Brownian motion with transaction costs[J]. International Journal of Financial Engineering, 2016, 3(1):637-654. [5] MERTON R C. Option pricing when underlying stock returns are discontinuous[J]. Journal of Financial Economics, 1976, 3(1/2):125-144. [6] LO A W, MACKINLAY A C. Stock market prices do not follow random walks: evidence from a simple specification test[J]. Review of Financial Studies, 1988, 1(1):41-66. [7] SHOKROLLAHI F, KıLıçMAN A. Pricing currency option in a mixed fractional Brownian motion with jumps environment[J/OL]. Mathematical Problems in Engineering, 2014[2020-03-19]. https://doi.org/10.1155/2014/858210. [8] PETERS E E. Fractal structure in the capital markets[J]. Financial Analysts Journal, 1989, 45(4):32-37. [9] NECULA C. Option pricing in a fractional Brownian motion environment[J]. Mathematical Reports, 2002, 2(3):259-273. [10] MURWANINGTYAS C E, KARTIKO S H, GUNARDI, et al. Option pricing by using a mixed fractional Brownian motion with jumps[J]. Journal of Physics: Conference Series, 2019(1180):012011. [11] ROGERS L C G. Arbitrage with fractional Brownian motion[J]. Mathematical Finance, 1997, 7(1):95-105. [12] 郭精军, 张亚芳. 次分数Vasicek随机利率模型下的欧式期权定价[J]. 应用数学, 2017,30(3):503-511. GUO Jingjun, ZHANG Yafang. European option pricing under the sub-fractional Vasicek stochastic interest rate model[J]. Applied Mathematics, 2017, 30(3):503-511. [13] 程志勇,郭精军,张亚芳.次分数布朗运动下支付红利的欧式期权定价[J].应用概率统计,2018,34(1):37-48. CHENG Zhiyong, GUO Jingjun, ZHANG Yafang. European option pricing for paying dividends under sub-fractional Brownian motion[J]. Applied Probability and Statistics, 2018, 34(1):37-48. [14] 肖炜麟,张卫国,徐维军. 次分数布朗运动下带交易费用的备兑权证定价[J]. 中国管理科学,2014,22(5):1-7. XIAO Weilin, ZHANG Weiguo, XU Weijun. Pricing of covered warrants with transaction costs under sub-fractional Brownian motion[J]. Chinese Journal of Management Science, 2014, 22(5):1-7. [15] TUDOR C. Some properties of the sub-fractional Brownian motion[J]. Stochastics an International Journal of Probability and Stochastic Processes, 2007, 79(5):431-448. [16] XU Feng, LI Runze. The pricing formulas of compound option based on the sub-fractional Brownian motion model[J]. Journal of Physics: Conference Series, 2018(1053):012027. |
[1] | 陈丽,林玲. 具有时滞效应的股票期权定价[J]. 山东大学学报(理学版), 2018, 53(4): 36-41. |
[2] | 李国成,王继霞. 交叉熵蝙蝠算法求解期权定价模型参数估计问题[J]. 《山东大学学报(理学版)》, 2018, 53(12): 80-89. |
[3] | 郭尊光1,孔涛2*,李鹏飞2, 张微2. 基于最优实施边界的美式期权定价的数值方法[J]. J4, 2012, 47(3): 110-119. |
[4] | 张慧1,2,孟纹羽1,来翔3. 不确定环境下障碍再装期权的动态定价模型 ——基于BSDE解的期权定价方法[J]. J4, 2011, 46(3): 52-57. |
[5] | 苗杰1,师恪2,蔡华1. 跳扩散模型下的可分离债券的定价[J]. J4, 2010, 45(8): 109-117. |
[6] | 陈祥利. 脆弱期权的公司价值分形定价模型[J]. J4, 2010, 45(11): 109-114. |
[7] | 孙 鹏,张 蕾,赵卫东 . 美式期权定价问题的一类有限体积数值模拟方法[J]. J4, 2007, 42(6): 1-06 . |
[8] | 孙 鹏,赵卫东 . 亚式期权定价问题的交替方向迎风有限体积方法[J]. J4, 2007, 42(6): 16-21 . |
|