《山东大学学报(理学版)》 ›› 2022, Vol. 57 ›› Issue (10): 52-58.doi: 10.6040/j.issn.1671-9352.0.2021.623
• • 上一篇
周芮,赵志兵*
ZHOU Rui, ZHAO Zhi-bing*
摘要: 设A/R是环的Frobenius扩张。证明了在环的Frobenius扩张下,一个模的无挠性和自反性是保持的,即对于任意的A-模 M,MA是无挠模(或自反模)当且仅当M作为R-模是无挠模(或自反模)。
中图分类号:
[1] KASCH F. Grundlagen einer theorie der Frobenius-Erweiterungen[J]. Math Ann, 1954, 127:453-474. [2] NAKAMAYA T, TSUZUKU T. On Frobenius extension Ⅰ[J]. Nagoya Math J, 1960, 17:89-110. [3] NAKAMAYA T, TSUZUKU T. On Frobenius extension Ⅱ[J]. Nagoya Math J, 1961, 19:127-148. [4] MORITA K. Adojint pairs of functors and Frobenius extension[J]. Sci Rep ToykoKyoikuDaigaku(Sect. A), 1965, 9:40-71. [5] XI Changchang. Frobenius bimodules and flat-dominant dimensions[J]. Sci China Math, 2021, 64:33-44. [6] KADISON L. New examples of Frobenius extensions[M] //University Lecture Series 14. Provedence: Amer Math Soc, 1999. [7] AUSLANDER M, BRIDGER M. Stable module theory[M]. New York: Memoirs of the American Mathematical Society, 1969: 94. [8] ANDERSON F W, FULLER K R. Rings and categories of modules[M]. New York: Springer-Verlag, 1974. [9] HUANG Zhaoyong. Selforthogonal modules with finite injective dimension III[J]. Algebra Rep Theory, 2009, 12:371-384. [10] AUSLANDER M. Coherent functors[M]. Berlin: Springer, 1966. [11] HUANG Zhaoyong. ω-k-torsionfree modules and ω-left approximation dimension[J]. Science in China Series A Mathematics, 2001, 44(2):184-192. [12] AUSLANDER M, REITEN I. Applications of contravariantly fnite subcategories[J]. Advances in Mathematics, 1991, 86(1):111-152. [13] ZHAO Zhaobing. Gorenstein homological invariant properties under Frobenius extensions[J]. Sci China Math, 2019, 62:2487-2496. [14] REN Wei. Gorenstein projective and injective dimensions over Frobenius extensions[J]. Comm Algebra, 2018, 46:1-7. [15] 徐辉, 赵志兵. 相对无挠模[J]. 山东大学学报(理学版), 2017, 52:75-80. XU Hui, ZHAO Zhibing. Relatively torsionfree modules[J]. Journal of Shandong University(Natural Science), 2017, 52:75-80. |
[1] | 罗肖强,谭玲玲,邢建民. 关于C-无挠模和C-自反模的若干同调性质[J]. 《山东大学学报(理学版)》, 2019, 54(4): 72-79. |
[2] | 王占平,张睿杰. Frobenius扩张上的Ding投射模[J]. 《山东大学学报(理学版)》, 2019, 54(12): 74-78. |
[3] | 徐辉,赵志兵. 相对无挠模[J]. 山东大学学报(理学版), 2017, 52(8): 75-80. |
|