《山东大学学报(理学版)》 ›› 2019, Vol. 54 ›› Issue (4): 72-79.doi: 10.6040/j.issn.1671-9352.0.2018.105
罗肖强1,谭玲玲2*,邢建民3
LUO Xiao-qiang1, TAN Ling-ling2*, XING Jian-min3
摘要: 研究了关于半对偶化模的无挠和自反模的相对概念和同调性质。证明了当C是1-对偶化模时,投射模的子模是完全C-自反模,并且刻画了有有限GC-维数的C-无挠和C-自反模类。此外还研究了模的GC-维数与左C-正交维数的关系以及给出了C-自反包络存在的某些充分条件。
中图分类号:
[1] FOXBY H-B. Gorenstein modules and related modules[J]. Mathematica Scandinavica, 1972, 31:267-284. [2] VASCONCELOS W V. Divisor theory in module categories[M]. North-Holland: Elsevier, 1974. [3] GOLOD E S. G-dimension and generalized perfect ideals[J]. Trudy Mat Inst Steklov, 1984, 165:62-66. [4] 黄兆泳. 同调方程[J]. 数学学报, 2001, 43(3):1-10. HUANG Zhaoyong. Homological equations[J]. Acta Mathematica Sinica, 2001, 43(3):1-10. [5] HOLM H, JØRGENSEN P. Semidualizing modules and related Gorenstein homological dimension[J]. Journal of Pure and Applied Algebra, 2006, 205(2):423-445. [6] SALIMI M, TAVASOLI E, MORADIFAR P, et al. Syzygy and torsionless modules with respect to a semidualizing module[J]. Algebras and Representation Theory, 2014, 17:1217-1234. [7] SALIMI M, TAVASOLI E, YASSEMI S. k-torsionless modules with finite Gorenstein dimension[J]. Czechoslovak Mathematical Journal, 2012, 62(3): 663-672. [8] SATHER-WAGSTAFF S. Semidualizing modules[M/OL]. [2018-03-01]. https://www.ndsu.edu/pubwed/~ssatherw/DOCS/survey.pdf. [9] BELSHOFF R. Remarks on reflexive modules, covers, and envelopes[J]. Beitrage Zur Algebra Und Geometrie, 2009, 50:353-362. [10] HUANG Chonghui, HUANG Zhaoyong. Torsionfree dimension of modules and self-injective dimension of rings[J]. Osaka Journal of Mathematics, 2012, 49(1):21-35. [11] HUANG Zhaoyong. On a generalization of the Auslander-Bridger transpose[J]. Communications in Algebra, 1999, 27:5791-5812. [12] HUANG Zhaoyong. ω-k-torsionfree modules and ω-left approximation dimension[J]. Science in China Series A: Mathematics, 2001, 44(2):184-192. [13] HUANG Zhaoyong. Extension closure of relative syzygy modules[J]. Science in China Series A: Mathematics, 2003, 46(5):611-620. [14] HUANG Zhaoyong. Extension closure of relative k-torsionfree modules[J]. Communications in Algebra, 2006, 34:3585-3592. [15] JINNAH M I. Reflexive modules over regular local rings[J]. Archiv der Mathematik, 1975, 26(1):367-371. [16] MAO Lixin, DING Nanqing. On divisible and torsionfree modules[J]. Communications in Algebra, 2008, 36(2):708-731. [17] 王芳贵. PVMD与自反模[J].四川师范大学学报(自然科学版), 2005, 28(4):379-385. WANG Fanggui. PVMD and reflexive modules[J]. Journal of Sichuan Normal University(Natural Science), 2005, 28(4):379-385. [18] WANG Fanggui, TANG Gaohua. Reflexive modules over coherent GCD-domains[J]. Communications in Algebra, 2005, 33(9):3283-3292. [19] WHITE D. Gorenstein projective dimension with respect to a semidualizing module[J]. Journal of Commutative Algebra, 2010, 2(1):111-137. [20] TANG Xi. New characterizations of dualizing modules[J]. Communications in Algebra, 2012, 40(3):845-861. [21] ENOCHS E E, JENDA O M G. Relative homological algebra[M]. Berlin: Walter de Gruyter, 2000. [22] BRUNS W, HERZOG J. Cohen-Macaulay rings[M]. Cambridge: Cambridge University Press, 1993. |
[1] | 郭寿桃,王占平. 正合零因子下模的Gorenstein同调维数[J]. 山东大学学报(理学版), 2018, 53(10): 17-21. |
[2] | 陈文倩,张孝金,昝立博. Gorenstein代数上的倾斜模的个数[J]. 山东大学学报(理学版), 2018, 53(10): 14-16. |
[3] | 卢博, 禄鹏. 复形的 FR-内射维数与 FR-平坦维数[J]. 山东大学学报(理学版), 2018, 53(6): 1-6. |
[4] | 罗肖强,邢建民. Ding gr-内射模和Ding gr-平坦模[J]. 山东大学学报(理学版), 2017, 52(11): 87-91. |
[5] | 王小青,梁力. 强余挠模的忠实平坦余基变换[J]. 山东大学学报(理学版), 2017, 52(11): 92-94. |
[6] | 杨春花. 关于复形的Gc-内射维数的一个注记[J]. 山东大学学报(理学版), 2017, 52(11): 82-86. |
[7] | 徐辉,赵志兵. 相对无挠模[J]. 山东大学学报(理学版), 2017, 52(8): 75-80. |
[8] | 陈秀丽,陈建龙. C-投射(内射,平坦)模与优越扩张[J]. 山东大学学报(理学版), 2017, 52(8): 85-89. |
[9] | 孙维昆,林汉兴. 单点扩张代数的表示维数[J]. 山东大学学报(理学版), 2016, 51(6): 85-91. |
[10] | 程海霞,殷晓斌. Abelian范畴中Gorenstein内射对象[J]. 山东大学学报(理学版), 2016, 51(2): 79-84. |
[11] | 谢宗真,张孝金. 所有τ-刚性模是投射模的代数[J]. 山东大学学报(理学版), 2016, 51(2): 16-20. |
[12] | 陈秀丽, 陈建龙. Hopf扩张下的余纯投射维数[J]. 山东大学学报(理学版), 2014, 49(10): 7-10. |
|