《山东大学学报(理学版)》 ›› 2022, Vol. 57 ›› Issue (11): 42-49.doi: 10.6040/j.issn.1671-9352.0.2021.518
• • 上一篇
王军震1,张淑敏1,2*,葛慧芬3
WANG Jun-zhen1, ZHANG Shu-min1,2*, GE Hui-fen3
摘要: 设图G是一个连通图,S⊆V(G)。图G的一棵S-斯坦纳树是一棵包含S中所有顶点的树T=(V ',E '),使得S⊆V '。如果连接S的两棵斯坦纳树T和T ',满足E(T)∩E(T ')=且V(T)∩V(T ')=S,则称T和T '是内部不交的。定义κ(S)为图G中内部不相交S-斯坦纳树的最大数目。广义k-连通度(2≤k≤n)定义为κk(G)=min{κ(S)|S⊆V(G)且|S|=k},显然,κ2(G)=κ(G)。证明了κ3(FQn)=n,其中FQn是n-维折叠超立方体。
中图分类号:
[1] BONDY J A, MURTY U S R. Graph Theory[M]. New York: Spring, 2008. [2] WHINEY H. Congruent graphs and connectivity of graphs[J]. Math Soc, 1932, 54:150-168. [3] CHARTRAND G, KAPOOR S F, LESNINK L. Generalized connectivity in graphs[J]. Bombay Math, 1984, 2:1-6. [4] SUN Yuefang, LI Xueliang, MAO Yapin, et al. Note on the generalized connectivity[J]. ARS Combinatoria: An Australian-Canadian Journal of Combinatorics, 2014, 114:193-202. [5] LI Shasha, LI Xueliang, ZHOU Wenli. Sharp bounds for the generalized connectivity κ3(G)[J]. Discrete Math, 2010, 310:2147-2163. [6] LI Hengzhe, MENG Jixiang, MA Yingbin, et al. Steiner tree packing number and tree connectivity[J]. Discrete Math, 2018, 341:1945-1951. [7] CHARTRAND G, OKAMOTO F, ZHANG Ping. Rainbow trees in graphs and generalized connectivity[J]. Networks, 2010, 55(4):360-367. [8] LI Hengzhe, LI Xueliang, SUN Yuefang. The generalized 3-connectivity of Cartesian product graphs[J]. Discrete Math Theor Comput Sci, 2012, 14(1):43-54. [9] LI Hengzhe, MA Yingbin, YANG Weihua. The generalized 3-connectivity of graph products[J]. Appl Math Comput, 2017, 295:77-83. [10] LI Shasha, LI Wei, LI Xueliang. The generalized connectivity of complete bipartite graphs[J]. ARS Combin, 2012, 104:65-79. [11] ZHAO Shuli, HAO Rongxia, WU Jie. The generalized 3-connectivity of some regular networks[J]. Parallel Distrib Comput, 2019, 133:18-29. [12] ZHAO Shuli, HAO Rongxia, WU Jie. The generalized connectivity of (n,k)-bubble-sort graphs[J]. Comput, 2019, 62:1277-1283. [13] ZHAO Shuli, HAO Rongxia. The generalized connectivity of alternating group graphs and(n,k)-star graphs[J]. Discrete Appl Math, 2018, 251:310-321. [14] LI Shasha, SHI Yongtang, TU Jianhua. The generalized 3-connectivity of cayley graphs on symmetric groups generated by trees and cycles[J]. Graphs Combin, 2017, 33:1195-1209. [15] LIN Shangwei, ZHANG Qianhua. The generalized 4-connectivity of hypercubes[J]. Discret Appl Math, 2017, 220:60-67. [16] ZHAO Shuli, HAO Rongxia, CHENG E. Two kinds of generalized connectivity of dual cubes[J]. Discret Appl Math, 2019, 257:306-316. [17] ZHAO Shuli, HAO Rongxia, WU Jie. The generalized 4-connectivity of hierarchical cubic networks[J]. Discret Appl Math, 2021, 289:194-206. [18] LI Xueliang, MAO Yaping. A survey on the generalized connectivity of graphs[J/OL]. arXiv: 1207.1838. [19] AMAWY E, ATIFI A. Properties and performance of folded hypercubes[J]. IEEE Transactions on Parallel and Distributed Systems, 1991, 2(1):131-142. [20] LIU Jiabao, PAN Xiangfeng, CAO Jinde. Some properties on Estrada index of folded hypercubes networks[J]. Abstract and Applied Analysis, 2014: 1-6. [21] PARK J S, DAVIS N J. The folded hypercube ATM switches[C] //The Proceedings of IEEE International Conference on Networking, Part II. [S.l.] :[s.L] , 2001: 370-379. [22] PARK J S, DAVIS N J. Modeling the folded hypercube ATM switches[C] //The Proceedings of OPNETWORK. [S.l.] :[s.L] , 2001. [23] LATIFI S. Simulation of PM21 network by folded hypercube[J]. IEE Proc E Comput Digit Tech, 1991, 138(6):397-400. [24] ESMAEILI T, LAK G, RAD A N. 3D-FolH-NOC: a new structure for parallel processing and distributed systems[J]. Comput, 2012, 4(6):163-168. [25] ZHANG Mimi, ZHOU Jinxin. On g-extra connectivity of folded hypercubes[J]. Theoretical Computer Science, 2015, 593:146-153. |
[1] | 解承玲, 马海成. 两个点并路的匹配等价图类[J]. 《山东大学学报(理学版)》, 2021, 56(1): 29-34. |
[2] | 李晶晶,边红,于海征. 亚苯基链的修正互惠度距离指标[J]. 《山东大学学报(理学版)》, 2020, 55(10): 71-76. |
[3] | 魏宗田,方慧,李银奎. 基于网络选址的设施系统可靠性[J]. 《山东大学学报(理学版)》, 2020, 55(10): 77-82. |
[4] | 刘佳,孙磊. 不含4-圈或弦6-圈的平面图是(3,0,0)-可染的[J]. 《山东大学学报(理学版)》, 2018, 53(12): 31-40. |
[5] | 陈洪玲,王慧娟,高红伟. 可嵌入到欧拉示性数非负的曲面图的线性荫度[J]. 《山东大学学报(理学版)》, 2018, 53(12): 17-22. |
[6] | 包丽娅,陈祥恩,王治文. 完全二部图K10,n(10≤n≤90)的点可区别E-全染色[J]. 《山东大学学报(理学版)》, 2018, 53(12): 23-30. |
[7] | 张友,黄丽娜,李沐春. 一类六角系统的点可区别边染色[J]. 《山东大学学报(理学版)》, 2018, 53(12): 41-47. |
[8] | 李美莲,邓青英. 平图的transition多项式的Maple计算[J]. 山东大学学报(理学版), 2018, 53(10): 27-34. |
[9] | 寇艳芳,陈祥恩,王治文. K1,3,p和 K1,4,p的点可区别的IE-全染色及一般全染色[J]. 山东大学学报(理学版), 2018, 53(8): 53-60. |
[10] | 刘小花,马海成. Q形图的匹配能序及Hosoya指标排序[J]. 山东大学学报(理学版), 2018, 53(8): 61-65. |
[11] | 张江悦,徐常青. 最大平均度不超过4的图的线性2-荫度[J]. 山东大学学报(理学版), 2018, 53(6): 7-10. |
[12] | 曹亚萌,黎娇,李国全. 有限域上的和集与子空间的平移[J]. 山东大学学报(理学版), 2018, 53(4): 7-10. |
[13] | 陈宏宇,张丽. 4-圈不共点的平面图的线性2-荫度[J]. 山东大学学报(理学版), 2017, 52(12): 36-41. |
[14] | 何玉萍,王治文,陈祥恩. mC8的点可区别全染色[J]. 山东大学学报(理学版), 2017, 52(10): 24-30. |
[15] | 李亭亭,劳会学. 一类混合型数论函数的均值估计[J]. 山东大学学报(理学版), 2017, 52(8): 70-74. |
|