您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

《山东大学学报(理学版)》 ›› 2023, Vol. 58 ›› Issue (2): 44-50.doi: 10.6040/j.issn.1671-9352.0.2021.725

• • 上一篇    

二面体群Grothendieck代数的Maschke定理

曹刘峰   

  1. 扬州大学数学学院, 江苏 扬州 225002
  • 发布日期:2023-02-12
  • 作者简介:曹刘峰(1995— ),男,博士研究生,研究方向为Hopf代数、代数表示理论、融合范畴等. E-mail:1204719495@qq.com
  • 基金资助:
    国家自然科学基金资助项目(11871063);江苏省研究生科研创新计划(KYCX22_3448)

Maschke theorem for the Grothendieck algebra of dihedral group

CAO Liu-feng   

  1. School of Mathematics, Yangzhou University, Yangzhou 225002, Jiangsu, China
  • Published:2023-02-12

摘要: F是特征为0的代数闭域,n=2N+1为任一奇数,明确计算了阶为2n的二面体群Dn的Grothendieck环r(FDn)的Casimir数为2n2,并且给出了对应的二面体群Grothendieck代数的Maschke定理。

关键词: 二面体群, Grothendieck环, Casimir数, Jacobson根

Abstract: Let F be an algebraically closed field with characteristic 0, and n=2N+1 be any odd number, we calculating the Casimir number of the Grothendieck ring r(FDn) of the dihedral group Dn equals 2n2 explicitly. Furthermore, we give the Maschke theorem for the corresponding Grothendieck algebra of dihedral group.

Key words: dihedral group, Grothendieck ring, Casimir number, Jacobson radical

中图分类号: 

  • O153.3
[1] ETINGOF P, NIKSHYCH D, OSTRIK V. On fusion categories[J]. Annals of Mathematics, 2005, 162(2):581-642.
[2] OSTRIK V. Fusion categories of rank 2[J]. Mathematical Research Letters, 2002, 10(2):177-184.
[3] NAIDU D, ROWELL E C. A finiteness property for braided fusion categories[J]. Algebras and Representation Theory, 2011, 14(5):837-855.
[4] NATALE S. On the classification of fusion categories[C] //Proceedings of the International Congress of Mathematicians(ICM 2018). [S.l.] : World Scientific, 2019, 1:173-200.
[5] ETINGOF P, GELAKI S, NIKSHYCH D, et al. Tensor categories[M] //Mathematical Surveys and Monographs, 205. [S.l.] : AMS, 2015.
[6] YUAN C T, ZHAO R J, LI L B. Irreducible Z+-modules of near-group fusion ring K(Z3, 3)[J]. Front Math China, 2018, 13(4):947-966.
[7] 王志华,李立斌. Verlinde模性范畴上的Casimir数及其应用[J].数学学报(中文版), 2018, 61(1):59-66. WANG Zhihua, LI Libin. The Casimir number of a Verlinde modular category and its applications[J]. Acta Math Sin(Chin Series), 2018, 61(1):59-66.
[8] WANG Z H, LIU G X, LI L B. The Casimir number and the determinant of a fusion category[J]. Glasgow Math J, 2020, 63(2):1-13.
[9] WANG Z H, LI L B, ZHANG Y H. A criterion for the Jacobson semisimplicity of the Green ring of a finite tensor category[J]. Glasgow Math J, 2018, 60(1):253-272.
[10] 曹刘峰,周芯雨,李立斌. CMS融合代数的不可约表示[J]. 数学的实践与认识, 2020, 50(24):189-195. CAO Liufeng, ZHOU Xinyu, LI Libin. The irreducible representations of CMS fusion ring[J]. Mathematics in Practice and Theory, 2020, 50(24):189-195.
[11] HIGMAN D. On orders in separable algebras[J]. Canad J Math, 1955, 7:509-515.
[12] 唐帅.二面体群的Grothendieck环结构[J]. 数学学报(中文版), 2020, 63(3):245-252. TANG Shuai. The structure of the Grothendieck ring of dihedral group[J]. Acta Math Sin(Chin Series), 2020, 63(3):245-252.
[13] LIDL R, MULLEN G L, TURNWALD G. Dickson polynomials[M]. Harlow: Longman Scientific & Technical, 1993.
[1] 马广琳,王尧,任艳丽. JQ环的一些性质[J]. 《山东大学学报(理学版)》, 2021, 56(8): 32-38.
[2] 谢伟,郭继东. 中心二面体群与二面体群之间的同态个数[J]. 《山东大学学报(理学版)》, 2020, 55(8): 80-86.
[3] 赖吉娜,郭继东. 一类非交换群与二面体群之间的同态个数[J]. 《山东大学学报(理学版)》, 2020, 55(12): 30-36.
[4] 李红霞,郭继东,海进科. 二面体群到一类亚循环群之间的同态个数[J]. 《山东大学学报(理学版)》, 2019, 54(6): 34-40.
[5] 王尧1, 姜美美1, 任艳丽2*. 斜多项式环的一些性质[J]. 山东大学学报(理学版), 2014, 49(06): 40-45.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!