您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

《山东大学学报(理学版)》 ›› 2023, Vol. 58 ›› Issue (2): 51-57.doi: 10.6040/j.issn.1671-9352.0.2022.054

• • 上一篇    

n-Frobenius对

陈文静,李玲   

  1. 西北师范大学数学与统计学院, 甘肃 兰州 730070
  • 发布日期:2023-02-12
  • 作者简介:陈文静(1989— ),女,博士,副教授,硕士生导师,研究方向为环的同调理论. E-mail:chenwj@nwnu.edu.cn
  • 基金资助:
    国家自然科学基金资助项目(11901463);甘肃省青年科技基金计划项目(20JR5RA517);西北师范大学青年教师科研能力提升计划项目(NWNU-LKQN-18-30);甘肃省高等学校创新能力提升项目(2019A-002)

n-Frobenius pairs

CHEN Wen-jing, LI Ling   

  1. College of Mathematics and Statistics, Northwest Normal University, Lanzhou 730070, Gansu, China
  • Published:2023-02-12

摘要: 引入了左(右)n-Frobenius对和特殊的左(右)n-Frobenius对的定义,研究了它们的性质,讨论了左(右)n-Frobenius对和右(左)n-余挠对之间的关系,给出了特殊的左(右)n-Frobenius对的等价刻画。最后给出了特殊的左(右)n-Frobenius对的一些应用,以及左完全的QF环的等价刻画。

关键词: Frobenius对, n-余挠对, n-Frobenius对

Abstract: The definitions of left(right)n-Frobenius pairs and special left(right)n-Frobenius pairs are introduced. Their properties are studied. The relationship between left(right)n-Frobenius pairs and right(left)n-cotorsion pairs is discussed, and some equivalent characterizations of special left(right)n-Frobenius pairs are given. Finally, some applications of special left(right)n-Frobenius pairs and equivalent characterizations of the left perfect QF ring are given.

Key words: Frobenius pair, n-cotorsion pair, n-Frobenius pair

中图分类号: 

  • O153.3
[1] SALCE L. Cotorsion theories for Abelian groups[J]. Symposia Mathematica, 1979, 23:11-32.
[2] HUERTA M, MENDOZA O, PÉREZ M A. n-Cotorsion pairs[J]. Journal of Pure and Applied Algebra, 2021, 225(5):106556.
[3] BECERRIL V, MENDOZA O, PÉREZ M A, et al. Frobenius pairs in Abelian categories: correspondences with cotorsion pairs, exact model categories, and Auslander-Buchweitz contexts[J]. Journal of Homotopy and Related Structures, 2019, 14(1):1-50.
[4] CHEN W J, LI L, RAO Y P. Model structures and recollements induced by duality pairs[EB/OL].[2022-08-09]. https://doi.org/10.48550/arXiv.2108.00140
[5] CHEN W J, LIU Z K. Model structures, recollements and duality pairs [J]. Journal of Algebra and Its Applications, 2021: 2350017.
[6] CHEN W J, LIU Z K, YANG X Y. A new method to construct model structures from a cotorsion pair[J]. Communications in Algebra, 2019, 47(11):4420-4431.
[7] LIANG L, YANG G. Constructions of Frobenius pairs in Abelian categories[J]. Mediterranean Journal of Mathematics, 2022, 19(2):1-17.
[8] ENOCHS E E, JENDA O M G. Relative homological algebra[M] //De Gruyter Expositions in Mathematics, Vol 30, Berlin: Walter de Gruyter & Co, 2000.
[9] ENOCHS E E, JENDA O M G. Gorenstein injective and projective modules[J]. Mathematische Zeitschrift, 1995, 220(1):611-633.
[10] DING N Q, LI Y L, MAO L X. Strongly Gorenstein flat modules[J]. Journal of the Australian Mathematical Society, 2009, 86(3):323-338.
[11] BRAVO D, GILLESPIE J, HOVEY M. The stable module category of a general ring[J]. [2022-08-09]. https://doi.org/10.48550/arXiv.1405.5768
[12] GILLESPIE J. Duality pairs and stable module categories[J]. Journal of Pure and Applied Algebra, 2019, 223(8):3425-3435.
[13] BECERRIL V, MENDOZA O, SANTIAGO V. Relative Gorenstein objects in Abelian categories[J]. Communications in Algebra, 2021, 49(1):352-402.
[14] HOLM H. Gorenstein homological dimensions[J]. Journal of Pure and Applied Algebra, 2004, 189(1/2/3):167-193.
[1] 任叶菲,梁力. Frobenius对的应用[J]. 《山东大学学报(理学版)》, 2022, 57(10): 39-43.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!