《山东大学学报(理学版)》 ›› 2023, Vol. 58 ›› Issue (6): 18-24, 39.doi: 10.6040/j.issn.1671-9352.0.2021.420
Huiling YIN(),Jingrong CHEN*(),Xiaoyan SU
摘要:
对于一个点子集
中图分类号:
1 |
SELKOWS M .The independence number of graphs in terms of degrees[J].Discrete Mathematics,1993,122,343-348.
doi: 10.1016/0012-365X(93)90307-F |
2 |
HARANTJ , SCHIERMEYERI .On the independence number of a graph in terms of order and size[J].Discrete Mathematics,2001,232,131-138.
doi: 10.1016/S0012-365X(00)00298-3 |
3 |
LIUXianliang , LUHongliang , WANGWei ,et al.PTAS for the minimum k-path connected vertex cover problem in unit disk graphs[J].Journal of Global Optimization,2013,56(2):449-458.
doi: 10.1007/s10898-011-9831-x |
4 |
KARDOSF , KATRENICJ , SCHIERMEYERI .On computing the minimum 3-path vertex cover and dissociation number of graphs[J].Theoretical Computer Science,2011,412(50):7009-7017.
doi: 10.1016/j.tcs.2011.09.009 |
5 | JAKOVACM , TARANENKOA .On the vertex k-path cover[J].Discrete Applied Mathematics,2013,161(13/14):19431949. |
6 |
BREŠARB , KARDOŠF , KATRENIČJ ,et al.Minimum k-path vertex cover[J].Discrete Applied Mathematics,2011,159(12):1189-1195.
doi: 10.1016/j.dam.2011.04.008 |
7 |
JAKOVACM , TARANENKOA .On the k-path vertex cover of some graph products[J].Discrete Mathematics,2013,313(1):94-100.
doi: 10.1016/j.disc.2012.09.010 |
8 | JAKOVACM .The $k$-path vertex cover of rooted product graphs[J].Discrete Applied Mathematics,2015,187(C):111-119. |
9 | 张㢶㢷. 一些乘积图的k-路顶点覆盖[D]. 天津: 天津师范大学, 2016. |
ZHANG Bitao. The k-path vertex cover of some product graphs[D]. Tianjin: Tianjin Normal University Press, 2016. | |
10 | ZHANGBitao , ZUOLiancui .The k-path vertex cover of some product graphs[J].WSEAS Transactions on Mathematics,2016,15,374-384. |
11 |
LIZhao , ZUOLiancui .The k-path vertex cover in Cartesian product graphs and complete bipartite graphs[J].Applied Mathematics and Computation,2018,331,69-79.
doi: 10.1016/j.amc.2018.03.008 |
[1] | 李宁,顾海波,马丽娜. 星图上的一类非线性Caputo序列分数阶微分方程边值问题解的存在性[J]. 《山东大学学报(理学版)》, 2022, 57(7): 22-34. |
[2] | 索孟鸽,陈京荣,张娟敏. 笛卡尔乘积图的k-路点覆盖[J]. 《山东大学学报(理学版)》, 2022, 57(12): 103-110. |
[3] | 包丽娅,陈祥恩,王治文. 完全二部图K10,n(10≤n≤90)的点可区别E-全染色[J]. 《山东大学学报(理学版)》, 2018, 53(12): 23-30. |
[4] | 李世玲, 陈祥恩,王治文. 完全二部图K3,n(n≥18)的点可区别E-全染色[J]. 山东大学学报(理学版), 2016, 51(4): 68-71. |
[5] | 高超,侯新民*. 关于“给定控制数的二部图的最大边数”的一点注记[J]. J4, 2013, 48(8): 21-23. |
[6] | 陈宏宇1,2, 张丽3. 给定控制数的连通二部图的最大边数[J]. J4, 2012, 47(8): 11-15. |
[7] | 杨林1,孙磊2*. 图的某些[r,s,t]-染色的色数[J]. J4, 2012, 47(6): 80-82. |
[8] | 李振琳,卢君龙,吕新忠. 关于图的符号边全控制[J]. J4, 2012, 47(6): 83-86. |
[9] | 曹雷1,2,郭嘉丰1,程学旗1. 基于二部图半监督方法的查询日志实体挖掘[J]. J4, 2012, 47(5): 32-37. |
[10] | 卢建立,蔡文娟. 均衡二部图中含指定顶点独立6-圈的个数[J]. J4, 2010, 45(12): 5-11. |
[11] | 邹青松 李硕 杨兴刚. 二部图中包含六圈的度条件[J]. J4, 2009, 44(8): 13-15. |
[12] | 何文玉, 陈祥恩*. 完全二部图K5,n的点可区别IE全染色[J]. J4, 2009, 44(2): 91-96. |
[13] | 王洪伟. 二部图匹配强迫数的谱[J]. J4, 2009, 44(12): 30-35. |
[14] | 耿建艳,颜 谨,李 峰 . 二部图中含指定顶点的独立4-圈[J]. J4, 2008, 43(5): 87-92 . |
[15] | 马巧灵,张苏梅 . 一类二部图的(d,1)-全标号[J]. J4, 2008, 43(2): 109-112 . |
|