《山东大学学报(理学版)》 ›› 2023, Vol. 58 ›› Issue (8): 118-126.doi: 10.6040/j.issn.1671-9352.0.2022.597
• • 上一篇
Minglei FANG(),Defeng DING*(),Ming WANG,Yuting SHENG
摘要:
在Shamanskii-like Levenberg-Marquardt(SLM)算法中引入参数, 得到一种改进的SLM算法, 在m阶非单调Armijo线搜索下证明所提出的算法具有全局收敛性, 并且有m+1阶收敛率。数值实验表明, 算法对于求解非线性方程组大规模问题有效。
中图分类号:
1 |
LEVENBERG K . A method for the solution of certain non-linear problems in least squares[J]. Quarterly of Applied Mathematics, 1944, 2 (2): 164- 168.
doi: 10.1090/qam/10666 |
2 |
MARQUARDT D W . An algorithm for least-squares estimation of nonlinear parameters[J]. Journal of the Society for Industrial and Applied Mathematics, 1963, 11 (2): 431- 441.
doi: 10.1137/0111030 |
3 | YAMASHITA N , FUKUSHIMA M . On the rate of convergence of the Levenberg-Marquardt method[M]. New York: Springer, 2001: 239- 249. |
4 |
FAN J Y . The modified Levenberg-Marquardt method for nonlinear equations with cubic convergence[J]. Mathematics of Computation, 2012, 81 (277): 447- 466.
doi: 10.1090/S0025-5718-2011-02496-8 |
5 |
FAN J Y . A Shamanskii-like Levenberg-Marquardt method for nonlinear equations[J]. Computational Optimization and Applications, 2013, 56 (1): 63- 80.
doi: 10.1007/s10589-013-9549-4 |
6 |
ZHOU W . On the convergence of the modified Levenberg-Marquardt method with a nonmonotone second order Armijo type line search[J]. Journal of Computational and Applied Mathematics, 2013, 239, 152- 161.
doi: 10.1016/j.cam.2012.09.025 |
7 |
AMINI K , ROSTAMI F . Three-steps modified Levenberg-Marquardt method with a new line search for systems of nonlinear equations[J]. Journal of Computational and Applied Mathematics, 2016, 300, 30- 42.
doi: 10.1016/j.cam.2015.12.013 |
8 |
CHEN L , MA Y F . Shamanskii-like Levenberg-Marquardt method with a new line search for systems of nonlinear equations[J]. Journal of Systems Science and Complexity, 2020, 33 (5): 1694- 1707.
doi: 10.1007/s11424-020-9043-x |
9 |
AMINI K , ROSTAMI F , CARISTI G . An efficient Levenberg-Marquardt method with a new LM parameter for systems of nonlinear equations[J]. Optimization, 2018, 67 (5): 637- 650.
doi: 10.1080/02331934.2018.1435655 |
10 |
MA Changfeng , JIANG Lihua . Some research on Levenberg-Marquardt method for the nonlinear equations[J]. Applied Mathematics and Computation, 2007, 184 (2): 1032- 1040.
doi: 10.1016/j.amc.2006.07.004 |
11 |
DENNIS J E , MORÉ J J . A characterization of super linear convergence and its application to quasi-Newton methods[J]. Mathematics of Computation, 1974, 28 (126): 549- 560.
doi: 10.1090/S0025-5718-1974-0343581-1 |
12 | WU Z X , ZHOU T , LI L , et al. A new modified efficient Levenberg-Marquardt method for solving systems of nonlinear equations[J]. Mathematical Problems in Engineering, 2021, 2021, 1- 11. |
13 | BEHLING R , IUSEM A . The effect of calmness on the solution set of systems of nonlinear equations[J]. Mathematical Programming, 2013, 137 (1): 155- 165. |
14 |
MORÉ J J , GARBOW B S , HILLSTROM K E . Testing unconstrained optimization software[J]. ACM Transactions on Mathematical Software, 1981, 7 (1): 17- 41.
doi: 10.1145/355934.355936 |
15 |
SCHNABEL R B , FRANK P D . Tensor methods for nonlinear equations[J]. SIAM Journal on Numerical Analysis, 1984, 21 (5): 815- 843.
doi: 10.1137/0721054 |
[1] | 王松华,罗丹,黎勇. 一类新型的修正WYL共轭梯度算法[J]. 《山东大学学报(理学版)》, 2021, 56(9): 87-95. |
[2] | 林穗华. Wolfe线搜索下的修正FR谱共轭梯度法[J]. 山东大学学报(理学版), 2017, 52(4): 6-12. |
[3] | 郑秀云,史加荣. Armijo型线搜索下的全局收敛共轭梯度法[J]. 山东大学学报(理学版), 2017, 52(1): 98-101. |
[4] | 崔建斌,姬安召,鲁洪江,王玉风,何姜毅,许泰. Schwarz Christoffel变换数值解法[J]. 山东大学学报(理学版), 2016, 51(4): 104-111. |
[5] | 王开荣,王书敏. 具有充分下降性的修正型混合共轭梯度法[J]. J4, 2013, 48(09): 78-84. |
[6] | 王洋. 求解一类非线性方程组的Newton-PLHSS方法[J]. J4, 2012, 47(12): 96-102. |
[7] | 李敏,陈宇,屈爱平. 一种充分下降的DY共轭梯度法及其收敛性[J]. J4, 2011, 46(7): 101-105. |
[8] | 程李晴1,2, 石巧连2. 一种新的混合共轭梯度算法[J]. J4, 2010, 45(6): 81-85. |
[9] | 程李晴. 一类共轭梯度法的全局收敛性[J]. J4, 2010, 45(5): 101-105. |
[10] | . 一类新的Wolfe线性搜索下的记忆梯度法[J]. J4, 2009, 44(7): 33-37. |
[11] | 陈 蓓 . 求解Toeplitz矩阵特征值反问题的不精确牛顿方法[J]. J4, 2008, 43(9): 89-93 . |
|