《山东大学学报(理学版)》 ›› 2021, Vol. 56 ›› Issue (9): 87-95.doi: 10.6040/j.issn.1671-9352.0.2020.257
• • 上一篇
王松华,罗丹*,黎勇
WANG Song-hua, LUO Dan*, LI Yong
摘要: 针对大规模无约束优化问题,提出一类新型的修正WYL共轭梯度算法。新算法不依赖任何线搜索且具有充分下降性和信赖域性质,在弱Wolfe-Powell线搜索下全局收敛。初步的数值实验结果表明,新算法是有效的,比经典WYL型共轭梯度法更具竞争性。
中图分类号:
[1] 戴彧虹,袁亚湘. 非线性共轭梯度法[M]. 上海:上海科学技术出版社,1999. DAI Yuhong, YUAN Yaxiang. Nonlinear conjugate gradient method[M]. Shanghai: Shanghai Science and Technology Publisher, 1999. [2] POWELL M J D. Nonconvex minimization calculations and the conjugate gradient method[J]. Lecture Notes in Mathematics, 1984, 1066:122-141. [3] GILBERT J C, NOCEDAL J. Global convergence properties of conjugate gradient methods for optimization[J]. SIAM Journal of Optimization, 2006, 2(1):21-42. [4] WEI Z X, YAO S W, LIU L Y. The convergence properties of some new conjugate gradient methods[J]. Applied Mathematics and Computation, 2006, 183(2):1341-1350. [5] YUAN G L,WEI Z X, LI G Y. A modified Polak-Ribière-Polyak conjugate gradient algorithm for nonsmooth convex programs[J]. Journal of Computational and Applied Mathematics, 2014, 255(1):86-96. [6] 李春念,袁功林. 求解无约束问题的修正PRP共轭梯度算法[J].西南大学学报(自然科学版),2018,40(9):67-75. LI Chunnian, YUAN Gonglin. A modified Polak-Ribière-Polyak conjugate gradient algorithm for smooth convex programs[J]. Journal of Southwest University(Natural Science Edition), 2018, 40(9):67-75. [7] YUAN G L, WANG X L, SHENG Z. Family weak conjugate gradient algorithms and their convergence analysis for nonconvex functions[J]. Numerical Algorithms, 2020, 84:935-956. [8] 林穗华. Wolfe线搜索下的修正FR谱共轭梯度法[J]. 山东大学学报(理学版),2017,52(4):6-12. LIN Suihua. A modified FR spectral conjugate gradient method with Wolfe line search[J]. Journal of Shandong University(Natural Science), 2017, 52(4):6-12. [9] 王开荣,高佩婷. 建立在DY法上的两类混合共轭梯度法[J]. 山东大学学报(理学版),2016,51(6):16-23. WANG Kairong, GAO Peiting. Two mixed conjugate gradient methods based on DY[J]. Journal of Shandong University(Natural Science), 2016, 51(6):16-23. [10] CHILMERAN H, AL-TAIE S, SAEED E. New parameter of CG-method for unconstrained optimization[J]. AL-Rafidain Journal of Computer Sciences and Mathematics, 2019, 13(1): 22-31. [11] 王松华,黎勇,吴加其. 一种新型线搜索下的修正3项LS谱共轭梯度法[J]. 安徽大学学报(自然科学版),2019,43(4):40-44. WANG Songhua, LI Yong, WU Jiaqi. A modified three terms LS conjugate gradient method with a new line search[J]. Journal of Anhui University(Natural Science Edition), 2019, 43(4):40-44. [12] 孙颖异,李健,孙中波,等. 求解无约束优化问题的两类修正的WYL共轭梯度方法[J]. 应用数学,2019,32(2):415-422. SUN Yingyi, LI Jian, SUN Zhongbo, et al. Two modified WYL conjugate gradient methods for unconstrained optimization problem[J]. Mathematica Applicata, 2019, 32(2):415-422. [13] 简金宝,尹江华,江羡珍. 一个充分下降的有效共轭梯度法[J]. 计算数学,2015,37(4):415-424. JIAN Jinbao, YIN Jianghua, JIANG Xianzhen. An efficient conjugate gradient method with sufficient descent property[J]. Mathematica Numerica Sinica, 2015, 37(4):415-424. [14] 董晓亮,李卫军. 一类新的WYL型共轭梯度法及其全局收敛性[J]. 河南师范大学学报(自然科学版),2018,46(4):107-112. DONG Xiaoliang, LI Weijun. Global convergence of a new Wei-Yao-Liu type conjugate gradient method[J]. Journal of Henan Normal University(Natural Science Edition), 2018, 46(4):107-112. [15] DAI Z F, WEN F H. Another improved Wei-Yao-Liu nonlinear conjugate gradient method with sufficient descent property[J]. Applied Mathematics & Computation, 2012, 218(14):7421-7430. [16] YUAN G L, MENG Z H, LI Y. A modified Hestenes and Stiefel conjugate gradient algorithm for large-scale nonsmooth minimizations and nonlinear equations[J]. Journal of Optimization Theory and Applications, 2016, 168(1):129-152. [17] 袁亚湘,孙文瑜.最优化理论与方法[M]. 北京:科学技术出版社,2001. YUAN Yaxiang, SUN Wenyu. Optimization theory and methods[M]. Beijing: Beijing Science and Technology Publisher, 2001. [18] BONGARTZ I, CONN A R, GOUNLD N. Constrained and unconstrained testing environment[J]. ACM Transactions on Mathematical Software, 1993, 50(124):123-160. [19] ANDREI N. An unconstrained optimization test functions collection[J]. Environmental Science and Technology, 2008, 10(1):6552-6558. [20] DOLAN E D, MORÉ J J. Benchmarking optimization software with performance profiles[J]. Mathematical Programming, 2001, 91(2):201-213. |
[1] | 林穗华. Wolfe线搜索下的修正FR谱共轭梯度法[J]. 山东大学学报(理学版), 2017, 52(4): 6-12. |
[2] | 郑秀云,史加荣. Armijo型线搜索下的全局收敛共轭梯度法[J]. 山东大学学报(理学版), 2017, 52(1): 98-101. |
[3] | 王开荣,高佩婷. 建立在DY法上的两类混合共轭梯度法[J]. 山东大学学报(理学版), 2016, 51(6): 16-23. |
[4] | 王开荣,王书敏. 具有充分下降性的修正型混合共轭梯度法[J]. J4, 2013, 48(09): 78-84. |
[5] | 冯琳1,2,段复建1,和文龙1. 基于简单二次函数模型的滤子非单调信赖域算法[J]. J4, 2012, 47(5): 108-114. |
[6] | 高宝,孙清滢. 基于Zhang H C非单调技术的修正HS共轭梯度算法[J]. J4, 2011, 46(7): 106-111. |
[7] | 程李晴1,2, 石巧连2. 一种新的混合共轭梯度算法[J]. J4, 2010, 45(6): 81-85. |
[8] | 程李晴. 一类共轭梯度法的全局收敛性[J]. J4, 2010, 45(5): 101-105. |
[9] | 王开荣,曹伟,王银河. Armijo型线搜索下的谱CD共轭梯度法[J]. J4, 2010, 45(11): 104-108. |
[10] | . 一类新的Wolfe线性搜索下的记忆梯度法[J]. J4, 2009, 44(7): 33-37. |
[11] | 孙敏 . 一种满足夹角性质的超记忆梯度方法[J]. J4, 2008, 43(6): 68-70 . |
[12] | 刘利英,李 莹, . 强Wolfe-Powell线搜索下共轭梯度法的全局收敛性[J]. J4, 2008, 43(5): 54-57 . |
|