您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

《山东大学学报(理学版)》 ›› 2023, Vol. 58 ›› Issue (12): 63-76.doi: 10.6040/j.issn.1671-9352.4.2022.5723

•   • 上一篇    下一篇

面向属性概念在自适应技能测评中的实践应用

何秋红1,3(),李进金2,4,*(),周银凤2,吴靖5   

  1. 1. 闽南师范大学计算机学院,福建 漳州 363000
    2. 闽南师范大学数学与统计学院,福建 漳州 363000
    3. 闽南师范大学数据科学与智能应用福建省高校重点实验室,福建 漳州 363000
    4. 闽南师范大学福建省粒计算及其应用重点实验室,福建 漳州 363000
    5. 闽南师范大学附属中学(漳州市第二中学),福建 漳州 363000
  • 收稿日期:2022-03-31 出版日期:2023-12-20 发布日期:2023-12-19
  • 通讯作者: 李进金 E-mail:hqh1129@mnnu.edu.cn;jinjinlimnu@126.com
  • 作者简介:何秋红(1977—),女,副教授,研究方向为知识空间理论和形式概念分析等. E-mail: hqh1129@mnnu.edu.cn
  • 基金资助:
    国家自然科学基金资助项目(11871259);国家自然科学基金资助项目(12271191);福建省自然科学基金资助项目(2019J01748);福建省自然科学基金资助项目(2020J02043);福建省自然科学基金资助项目(2020J01812);福建省自然科学基金资助项目(2022J01306);福建省自然科学基金资助项目(2022J05169);福建省2022本科高校教育教学研究项目(一般项目)(FBJG20220091)

Practical application of property-oriented concepts in adaptive assessment of skills

Qiuhong HE1,3(),Jinjin LI2,4,*(),Yinfeng ZHOU2,Jing WU5   

  1. 1. School of Computer Science, Minnan Normal University, Zhangzhou 363000, Fujian, China
    2. School of Mathematics and Statistics, Minnan Normal University, Zhangzhou 363000, Fujian, China
    3. Fujian Provincial University Key Laboratory of Data Science and Intelligent Application, Minnan Normal University, Zhangzhou 363000, Fujian, China
    4. Fujian Key Laboratory of Granular Computing and Application, Minnan Normal University, Zhangzhou 363000, Fujian, China
    5. Affiliated High School of Minnan Normal University(Zhangzhou No.2 Middle School), Zhangzhou 363000, Fujian, China
  • Received:2022-03-31 Online:2023-12-20 Published:2023-12-19
  • Contact: Jinjin LI E-mail:hqh1129@mnnu.edu.cn;jinjinlimnu@126.com

摘要:

将技能多映射与面向属性概念相结合可获得概念(X, B),由此得到构建知识结构与技能结构的方法应用于自适应技能测评。首先,由专家教师给出问题集Q和技能集S及其技能多映射(Q, S; μ);其次,从概念(X, B)外延和内涵分别获得知识结构和技能结构;再次,由知识结构进行考生样本的自适应知识测评,并统计样本的知识状态比例;然后,优化知识空间理论“二分法”的等比例选题规则为样本比例选题规则,获得针对不同地域和年龄段考生更快速的测评效果;最后,画出技能集学习路径图。

关键词: 知识结构, 技能结构, 学习路径, 技能背景, 面向属性概念

Abstract:

Certain concepts (X, B) can be obtained via the combination of skill multimaps with property-oriented concepts, which leads to a method for constructing knowledge and skill structures that can be applied to the adaptive assessment of skills. The processis as follows. First, expert teachers provide the question set Q, skill set S, and their corresponding skill multimaps (Q, S; μ). Next, the knowledge and skill structures are obtained from the extension and the intention of (X, B). Thereafter the knowledge structure is used to conduct the adaptive assessment of the sample, and the proportion of their knowledge states is calculated. Subsequently, the equal proportion selection rule of knowledge space theory "binary responses" is optimized to the sample proportion selection rule, facilitate faster assessment effects for examinees in different regions and age groups. Finally, the figure of learning paths for skill sets is drawn.

Key words: knowledge structure, skill structure, learning path, skill context, property-oriented concept

中图分类号: 

  • TP182

图1

FCA在KST中的实践应用流程图"

表1

B4×5第一行的技能背景"

(Q, S) a b c d e f
1 1 0 0 0 0 0
2 1 1 1 0 0 0
3 0 0 0 1 1 0
4 1 1 0 0 0 1
5 1 1 1 0 0 1

表2

技能相关问题个数"

技能 问题集 问题个数
a {1, 2, 4, 5} 4
b {2, 4, 5} 3
c {2, 5} 2
d {3, 4, 5} 3
e {3, 5} 2
f {4, 5} 2

图2

技能推测关系哈斯图"

表3

4个合取技能背景的概念格"

背景1概念 背景2概念 背景3概念 背景4概念
(?, ?) (?, ?) (?, ?) (?, ?)
(1, a) (1, a) (1, a) (1, a)
(3, de) (3, de) (3, de) (3, de)
(12, abc) (12, abc) (12, abc) (12, abc)
(13, ade) (13, ade) (13, ade) (13, ade)
(14, abf) (14, abf) (14, adf) (14, adf)
(123, abcde) (123, abcde) (123, abcde) (123, abcde)
(1245, abcf) (124, abcf) (125, abcf)
(1245, abcdf) (124, abcdf)
(135, adef) (134, adef) (1345, adef)
(134, abdef) (1345, abdef)
(Q, S) (Q, S) (Q, S) (Q, S)

图3

背景1的面向属性概念格"

图4

等比例二元决策树"

表4

样本测评过程步骤"

知识状态 步骤数 选择问题及考生样本反馈序列
? 3 (3, 0), (2, 0), (1, 0)
{1} 4 (3, 0), (2, 0), (1, 1), (4, 0)
{3} 3 (3, 1), (2, 0), (1, 0)
{1, 2} 3 (3, 0), (2, 1), (4, 0)
{1, 3} 4 (3, 1), (2, 0), (1, 1), (4, 0)
{1, 4} 4 (3, 0), (2, 0), (1, 1), (4, 1)
{1, 2, 3} 3 (3, 1), (2, 1), (4, 0)
{1, 2, 4, 5} 3 (3, 0), (2, 1), (4, 1)
{1, 3, 4, 5} 4 (3, 1), (2, 0), (1, 1), (4, 1)
{1, 2, 3, 4, 5} 3 (3, 1), (2, 1), (4, 1)

表5

样本知识状态分布比例"

知识状态 卷数 比例
? 1 0.005
{1} 3 0.014
{3} 6 0.028
{1, 2} 0 0
{1, 3} 2 0.009
{1, 4} 5 0.023
{1, 2, 3} 5 0.023
{1, 2, 4, 5} 2 0.009
{1, 3, 4, 5} 81 0.375
{1, 2, 3, 4, 5} 111 0.514
共10 216 1

图5

考生知识状态比例二元决策树"

表6

考生测评过程步骤"

知识状态 步骤数 选择问题及新考生反馈序列
? 5 (2, 0), (5, 0), (3, 0), (4, 0), (1, 0)
{1} 5 (2, 0), (5, 0), (3, 0), (4, 0), (1, 1)
{3} 4 (2, 0), (5, 0), (3, 1), (1, 0)
{1, 2} 4 (2, 1), (4, 0), (1, 1), (3, 0)
{1, 3} 4 (2, 0), (5, 0), (3, 1), (1, 1)
{1, 4} 4 (2, 0), (5, 0), (3, 0), (4, 1)
{1, 2, 3} 4 (2, 1), (4, 0), (1, 1), (3, 1)
{1, 2, 4, 5} 3 (2, 1), (4, 1), (3, 0)
{1, 3, 4, 5} 2 (2, 0), (5, 1)
{1, 2, 3, 4, 5} 3 (2, 1), (4, 1), (3, 1)

图6

技能集S学习路径"

表7

技能集S学习路径分解"

路径 技能集S学习路径
1 $\varnothing \stackrel{a}{\longrightarrow}\{1\} \stackrel{b c}{\longrightarrow}\{1, 2\} \stackrel{f}{\longrightarrow}\{1, 2, 4, 5\} \stackrel{d e / e}{\longrightarrow} \boldsymbol{Q}$
2 $\varnothing \stackrel{a}{\longrightarrow}\{1\} \stackrel{b c}{\longrightarrow}\{1, 2\} \stackrel{d e}{\longrightarrow}\{1, 2, 3\} \stackrel{f}{\longrightarrow} \boldsymbol{Q}$
3 $\varnothing \stackrel{a}{\longrightarrow}\{1\} \stackrel{b f / d f}{\longrightarrow}\{1, 4\} \stackrel{b c / c}{\longrightarrow}\{1, 2, 4, 5\} \stackrel{d e / e}{\longrightarrow} \boldsymbol{Q}$
4 $\varnothing \stackrel{a}{\longrightarrow}\{1\} \stackrel{b f / d f}{\longrightarrow}\{1, 4\} \stackrel{d e / e}{\longrightarrow}\{1, 3, 4, 5\} \stackrel{b c / c}{\longrightarrow} \boldsymbol{Q}$
5 $\varnothing \stackrel{a}{\longrightarrow}\{1\} \stackrel{d e}{\longrightarrow}\{1, 3\} \stackrel{b c}{\longrightarrow}\{1, 2, 3\} \stackrel{f}{\longrightarrow} \boldsymbol{Q}$
6 $\varnothing \stackrel{a}{\longrightarrow}\{1\} \stackrel{d e}{\longrightarrow}\{1, 3\} \stackrel{f}{\longrightarrow}\{1, 3, 4, 5\} \stackrel{b c / c}{\longrightarrow} \boldsymbol{Q}$
7 $\varnothing \stackrel{d e}{\longrightarrow}\{3\} \stackrel{a}{\longrightarrow}\{1, 3\} \stackrel{b c}{\longrightarrow}\{1, 2, 3\} \stackrel{f}{\longrightarrow} \boldsymbol{Q}$
8 $\varnothing \stackrel{d e}{\longrightarrow}\{3\} \stackrel{a}{\longrightarrow}\{1, 3\} \stackrel{f}{\longrightarrow}\{1, 3, 4, 5\} \stackrel{b c / c}{\longrightarrow} \boldsymbol{Q}$

表 

常见符号表"

符号 名称 说明
Q 非空有限问题集 所有问题的集合
q 问题 一个问题qQ
K 知识状态 解答正确的问题集
Kq Kq知识状态集族 Kq的知识状态构成的集族
$\mathscr{K}$ 知识状态集族 Q的子集构成的集族且至少包含?和Q
U 对象集 形式背景三元组之一
A 属性集 形式背景三元组之二
I 二元关系I?U×A 形式背景三元组之三
x* x所具有的属性集合 x*={a|aA, (x, a)∈Ι}
a* 具有属性a的对象集合 a*={x|xU, (x, a)∈Ι}
X X中对象所具有的属性集合 X={aA|a*X≠?}
B 只具有B中属性的对象集合 B={xU|x*?B}
S 非空有限技能集 所有技能的集合
s 技能 一个技能sS
C 技能子集 正确解答K相关的最小技能子集
T 技能背景中的技能子集 技能子集T?S
$\mathscr{T}$ 技能状态集族 S的子集T构成的集族
τ 技能映射(技能单映射) Q到2S\{?}的映射
μ 技能多映射 Q到(22S\{?})\{?}的映射
1 DOIGNON J P , FALMAGNE J C . Spaces for the assessment of knowledge[J]. International Journal of Man-Machine Studies, 1985, 23 (2): 175- 196.
doi: 10.1016/S0020-7373(85)80031-6
2 DOIGNON J P , FALMAGNE J C . Knowledge spaces[M]. Berlin: Springer, 1999.
3 FALMAGNE J C , DOIGNON J P . Learning spaces: interdisciplinary applied mathematics[M]. Berlin: Springer, 2011: 22- 112.
4 FALMAGNE J C , ALBERT D , DOBLE C , et al. Knowledge spaces: applications in education[M]. Berlin: Springer, 2013: 51- 68.
5 HELLER J , STEINER C , HOCKEMEYER C , et al. Competence-based knowledge structures for personalised learning[J]. International Journal on E-learning, 2006, 5 (1): 75- 88.
6 STEINER C M , NUSSBAUMER A , ALBERT D . Supporting self-regulated persona-lised learning through competence-based knowledge space theory[J]. Policy Futures in Education, 2009, 7 (6): 645- 661.
doi: 10.2304/pfie.2009.7.6.645
7 DOBLE C , MATAYOSHI J , COSYN E , et al. A data-based simulation study of reliability for an adaptive assessment based on knowledge space theory[J]. International Journal of Artificial Intelligence in Education, 2019, 29 (2): 258- 282.
8 FALMAGNE J C , KOPPEN M , VILLANO M , et al. Introduction to knowledge spaces: how to build, test, and search them[J]. Psychological Review, 1990, 97 (2): 201- 224.
doi: 10.1037/0033-295X.97.2.201
9 COSYN E , UZUN H , DOBLE C , et al. A practical perspective on knowledge space theory: ALEKS and its data[J]. Journal of Mathematical Psychology, 2021, 101, 102512.
doi: 10.1016/j.jmp.2021.102512
10 DÜNTSCH I , GEDIGA G . Skills and knowledge structures[J]. British Journal of Mathematical and Statistical Psychology, 1995, 48 (1): 9- 27.
doi: 10.1111/j.2044-8317.1995.tb01047.x
11 DOIGNON J P. Knowledge spaces and skill assignments[M]//Contributions to Mathematical Psychology, Psychometrics, and Methodology. New York: Springer, 1994: 111-121.
12 STEFANUTTI L , DE CHIUSOLE D . On the assessment of learning in competence based knowledge space theory[J]. Journal of Mathematical Psychology, 2017, 80, 22- 32.
doi: 10.1016/j.jmp.2017.08.003
13 STEFANUTTI L . On the assessment of procedural knowledge: from problem spaces to knowledge spaces[J]. British Journal of Mathematical and Statistical Psychology, 2019, 72 (2): 185- 218.
doi: 10.1111/bmsp.12139
14 STEFANUTTI L , ANSELMI P , DE CHIUSOLE D , et al. On the polytomous generalization of knowledge space theory[J]. Journal of Mathematical Psychology, 2020, 94, 102306.
doi: 10.1016/j.jmp.2019.102306
15 HELLER J . Generalizing quasi-ordinal knowledge spaces to polytomous items[J]. Journal of Mathematical Psychology, 2021, 101, 102515.
doi: 10.1016/j.jmp.2021.102515
16 孙贝. 基于知识空间理论的学习诊断模型研究与实现[D]. 长沙: 湖南大学, 2009.
SUN Bei. Research and implementation of learning diagnosis model based on knowledge space theory[D]. Changsha: Hunan University, 2009.
17 刘艳花. 基于知识空间的自适应测试方法研究及实现[D]. 长沙: 湖南大学, 2010.
LIU Yanhua. Research and implementation of adaptive testing method based on knowledge space theory[D]. Changsha: Hunan University, 2010.
18 杨文正, 邹霞. 运用知识空间理论分析概念图[J]. 中国电化教育, 2011, (3): 83- 87.
doi: 10.3969/j.issn.1006-9860.2011.03.021
YANG Wenzheng , ZOU Xia . Use knowledge space theory to analyze concept map[J]. China Audio-visual Education, 2011, (3): 83- 87.
doi: 10.3969/j.issn.1006-9860.2011.03.021
19 张治, 刘小龙, 余明华, 等. 研究型课程自适应学习系统: 理念、策略与实践[J]. 中国电化教育, 2018, (4): 119- 130.
doi: 10.3969/j.issn.1006-9860.2018.04.017
ZHANG Zhi , LIU Xiaolong , YU Minghua , et al. Adaptive learning system for research-oriented course: idea, strategy, and practice[J]. China Educational Technology, 2018, (4): 119- 130.
doi: 10.3969/j.issn.1006-9860.2018.04.017
20 麦裕华, 何庆辉, 肖信. 基于知识空间理论的高中生科学原理学习分析: 以氧化还原反应为例[J]. 化学教育, 2018, 39 (19): 34- 40.
MAI Yuhua , HE Qinghui , XIAO Xin . Analysis of senior high school students̓ learning of scientific principles based on the knowledge space theory: a case of oxidation-reduction reaction[J]. Chinese Journal of Chemical Education, 2018, 39 (19): 34- 40.
21 何庆辉, 麦裕华. 基于知识空间理论的高一学生离子反应关键学习路径[J]. 化学教学, 2018, (7): 12- 17.
HE Qinghui , MAI Yuhua . Key study path of ionic reactions for Grade 1 high school students based on knowledge space theory[J]. Education in Chemistry, 2018, (7): 12- 17.
22 其勒格尔. 基于KST的学习诊断模型在《大学计算机基础》课程中的实践研究[D]. 呼和浩特: 内蒙古师范大学, 2019.
JILE G E. Practical research on KST-based learning diagnosis model in the course of university computer foundation[D]. Huhhot: Inner Mongolia Normal University, 2019.
23 GE Xun , LI Jinjin . A note on the separability of items in knowledge structures delineated by skill multimaps[J]. Journal of Mathematical Psychology, 2020, 98, 102427.
doi: 10.1016/j.jmp.2020.102427
24 何秋红, 孙文, 郑文彬, 等. 学习空间理论的ACM竞赛关键学习路径算法[J]. 山西大学学报(自然科学版), 2020, 43 (4): 828- 837.
HE Qiuhong , SUN Wen , ZHENG Wenbin , et al. An algorithm for critical learning path of ACM contest based on learning spaces theory[J]. Journal of Shanxi University(Natural Science Edition), 2020, 43 (4): 828- 837.
25 SUN Wen , LI Jinjin , GE Xun , et al. Knowledge structures delineated by fuzzy skill maps[J]. Fuzzy Sets and Systems, 2021, 407 (3): 50- 66.
26 ZHOU Yinfeng , LI Jinjin , WANG Hongkun , et al. Skills and fuzzy knowledge structures[J]. Journal of Intelligent & Fuzzy Systems, 2022, 42 (3): 2629- 2645.
27 孙晓燕, 李进金. 基于程序性知识学习的项目状态转移函数与多分知识结构[J]. 模式识别与人工智能, 2022, 35 (3): 223- 242.
SUN Xiaoyan , LI Jinjin . Item state transition functions and polytomous knowledge structures based on procedural knowledge learning[J]. Pattern Recognition and Artificial Intelligence, 2022, 35 (3): 223- 242.
28 孙晓燕, 李进金. 技能映射通过析取模型诱导的多分知识结构[J]. 华侨大学学报(自然科学版), 2023, 44 (1): 119- 132.
SUN Xiaoyan , LI Jinjin . Polytomous knowledge structures delineated by skill map through disjunctive model[J]. Journal of Huaqiao University(Natural Science Edition), 2023, 44 (1): 119- 132.
29 约翰-克劳德法尔马涅(美), 约翰-保罗杜瓦尼(比). 学习空间: 跨学科的应用数学[M]. 胡祥恩(校), 王泰(译). 北京: 世界图书出版公司, 2016.
Jean-Claude Falmagne(American), Jean-Paul Doignon(Belgian). Learning spaces: interdisciplinary applied mathematics[M]. HU Xiangen(proofreader), WANG Tai(interpreter). Beijing: World Book Publishing Company, 2016.
30 LAKSHMINARAYAN K. Theoretical and empirical aspects of some stochastic learning models[D]. Irvine: University of California, 1995.
31 COSYN E, DOBLE C, FALMAGNE J C, et al. Assessing mathematical knowledge in a learning space[M]//Knowledge Spaces. Berlin: Springer, 2013: 27-50.
32 LEE S , BELKASIM S , CHAHINE I C , et al. A web application for the knowledge space theory analysis: KST web[J]. International Journal of Engineering Research and Technology, 2014, 3 (9): 319- 322.
33 刘欣怡, 徐丽芳. 数字教育出版自适应智能教学与评估系统研究: 以麦格劳-希尔的ALEKS为例[J]. 出版参考, 2020, (6): 18- 23.
LIU Xinyi , XU Lifang . A study of adaptive intelligent teaching and assessment systems for digital educational publishing: McGraw-Hill̓s ALEKS as an example[J]. Information on Publication, 2020, (6): 18- 23.
34 周琴, 文欣月. 从自适应到智适应: 人工智能时代个性化学习新路径[J]. 现代教育管理, 2020, (9): 89- 96.
ZHOU Qin , WEN Xinyue . From adaptive learning to intelligent adaptive learning: a new approach to personalized learning in the era of artificial intelligence[J]. Modern Education Management, 2020, (9): 89- 96.
35 WILLE R. Restructuring lattice theory: an approach based on hierarchies of concepts[M]//Ordered Sets. Dordrecht: Springer, 1982: 445-470.
36 马垣, 曾子维, 迟呈英, 等. 形式概念分析及其新进展[M]. 北京: 科学出版社, 2011.
MA Yuan , ZENG Ziwei , CHI Chengying , et al. Formal concept analysis and its new progress[M]. Beijing: Science Press, 2011.
37 魏玲, 曹丽, 祁建军, 等. 形式概念分析中的概念约简与概念特征[J]. 中国科学(信息科学), 2020, 50 (12): 1817- 1833.
WEI Ling , CAO Li , QI Jianjun , et al. Concept reduction and concept characteristics in formal concept analysis[J]. Scientia Sinica(Informationis), 2020, 50 (12): 1817- 1833.
38 李金海, 魏玲, 张卓, 等. 概念格理论与方法及其研究展望[J]. 模式识别与人工智能, 2020, 33 (7): 619- 642.
LI Jinhai , WEI Ling , ZHANG Zhuo , et al. Concept lattice theory and method and their research prospect[J]. Pattern Recognition and Artificial Intelligence, 2020, 33 (7): 619- 642.
39 CARPINETO C , ROMANO G . A lattice conceptual clustering system and its application to browsing retrieval[J]. Machine Learning, 1996, 24 (2): 95- 122.
40 SAMPATH S , SPRENKLE S , GIBSON E , et al. Applying concept analysis to user-session-based testing of web applications[J]. IEEE Transactions on Software Engineering, 2007, 33 (10): 643- 658.
41 ZUPAN B , BOHANEC M , DEMSAR J , et al. Learning by discovering concept hierarchies[J]. Artificial Intelligence, 1999, 109 (1/2): 211- 242.
42 NGUYEN P H P , CORBETT D . A basic mathematical framework for conceptual graphs[J]. IEEE Transactions on Knowledge and Data Engineering, 2005, 18 (2): 261- 271.
43 RUSCH A, WILLE R. Knowledge spaces and formal concept analysis[M]// Data Analysis and Information Systems. Berlin: Springer, 1996: 427-436.
44 SPOTO A , STEFANUTTI L , VIDOTTO G . Knowledge space theory, formal concept analysis, and computerized psychological assessment[J]. Behavior Research Methods, 2010, 42 (1): 342- 350.
45 李进金, 孙文. 知识空间、形式背景和知识基[J]. 西北大学学报(自然科学版), 2019, 49 (4): 517- 526.
LI Jinjin , SUN Wen . Knowledge space, formal context and knowledge base[J]. Journal of Northwest University(Natural Science Edition), 2019, 49 (4): 517- 526.
46 周银凤, 韩光明. 基于析取模型的技能约简与推测关系的研究[J]. 闽南师范大学学报(自然科学版), 2020, 33 (3): 1- 7.
ZHOU Yinfeng , HAN Guangming . Research on skill reduction and surmise relation based on disjunction model[J]. Journal of Minnan Normal University(Natural Science Edition), 2020, 33 (3): 1- 7.
47 周银凤, 李进金, 冯丹露, 等. 形式背景下的学习路径与技能评估[J]. 模式识别与人工智能, 2021, 34 (12): 1069- 1084.
ZHOU Yinfeng , LI Jinjin , FENG Danlu , et al. Learning paths and skills assessment in formal context[J]. Pattern Recognition and Artificial Intelligence, 2021, 34 (12): 1069- 1084.
48 周银凤, 李进金. 形式背景下的技能约简与评估[J]. 计算机科学与探索, 2022, 16 (3): 692- 702.
ZHOU Yinfeng , LI Jinjin . Skill reduction and assessment in formal context[J]. Journal of Frontiers of Computer Science and Technology, 2022, 16 (3): 692- 702.
49 GANTER B , WILLE R . Formal concept analysis: mathematical foundations[M]. Berlin: Springer, 1999.
50 李进金, 李克典, 吴端恭. 基于粗糙集与概念格的知识系统模型[M]. 北京: 科学出版社, 2013: 24- 150.
LI Jinjin , LI Kedian , WU Duangong . Knowledge system model based on rough set and concept lattice[M]. Beijing: Science Press, 2013: 24- 150.
51 BIRKHOFF G . Rings of sets[J]. Duke Mathematical Journal, 1937, 3 (3): 443- 454.
52 冯丹露, 周银凤. 基于面向问题概念格的技能约简与推测关系[J]. 闽南师范大学学报(自然科学版), 2021, 34 (2): 36- 44.
FENG Danlu , ZHOU Yinfeng . Skill reduction and surmise relation based on object problem concept lattice[J]. Journal of Minnan Normal University(Natural Science Edition), 2021, 34 (2): 36- 44.
53 孙波, 傅骞, 曲朝霞. 基于"扩展知识空间理论"的自适应测评过程研究[J]. 中国电化教育, 2004, (6): 75- 77.
SUN Bo , FU Qian , QU Zhaoxia . Research on adaptive evaluation process based on extended knowledge space theory[J]. China Electronic Education, 2004, (6): 75- 77.
54 孙波, 傅骞. 扩展知识空间理论研究[J]. 中国电化教育, 2004, (4): 74- 77.
SUN Bo , FU Qian . Research on extended knowledge space theory[J]. China Electronic Education, 2004, (4): 74- 77.
[1] 林宇静,李进金,陈惠琴. 形式背景下的多分知识结构与学习路径[J]. 《山东大学学报(理学版)》, 2023, 58(9): 114-126.
[2] 曹喜燕,林福财,金铭,李进金. 程序性知识评估: 从问题空间到可辨识知识结构[J]. 《山东大学学报(理学版)》, 2023, 58(7): 97-105, 114.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 杨军. 金属基纳米材料表征和纳米结构调控[J]. 山东大学学报(理学版), 2013, 48(1): 1 -22 .
[2] 何海伦, 陈秀兰*. 变性剂和缓冲系统对适冷蛋白酶MCP-01和中温蛋白酶BP-01构象影响的圆二色光谱分析何海伦, 陈秀兰*[J]. 山东大学学报(理学版), 2013, 48(1): 23 -29 .
[3] 赵君1,赵晶2,樊廷俊1*,袁文鹏1,3,张铮1,丛日山1. 水溶性海星皂苷的分离纯化及其抗肿瘤活性研究[J]. J4, 2013, 48(1): 30 -35 .
[4] 孙小婷1,靳岚2*. DOSY在寡糖混合物分析中的应用[J]. J4, 2013, 48(1): 43 -45 .
[5] 罗斯特,卢丽倩,崔若飞,周伟伟,李增勇*. Monte-Carlo仿真酒精特征波长光子在皮肤中的传输规律及光纤探头设计[J]. J4, 2013, 48(1): 46 -50 .
[6] 杨伦,徐正刚,王慧*,陈其美,陈伟,胡艳霞,石元,祝洪磊,曾勇庆*. RNA干扰沉默PID1基因在C2C12细胞中表达的研究[J]. J4, 2013, 48(1): 36 -42 .
[7] 冒爱琴1, 2, 杨明君2, 3, 俞海云2, 张品1, 潘仁明1*. 五氟乙烷灭火剂高温热解机理研究[J]. J4, 2013, 48(1): 51 -55 .
[8] 杨莹,江龙*,索新丽. 容度空间上保费泛函的Choquet积分表示及相关性质[J]. J4, 2013, 48(1): 78 -82 .
[9] 李永明1, 丁立旺2. PA误差下半参数回归模型估计的r-阶矩相合[J]. J4, 2013, 48(1): 83 -88 .
[10] 董伟伟. 一种具有独立子系统的决策单元DEA排序新方法[J]. J4, 2013, 48(1): 89 -92 .